【題目】滿足下列條件的△ABC不是直角三角形的是()

A. BC=1,AC=2,AB=

B. BC=1,AC=2,AB=

C. BC:AC:AB=3:4:5

D. ∠A:∠B:∠C=3:4:5

【答案】D

【解析】

先求出兩小邊的平方和和最長邊的平方看看是否相等即可

A.∵12+(2=22,∴△ABC是直角三角形故本選項不符合題意

B.12+22=(2,∴△ABC是直角三角形故本選項不符合題意;

C.設(shè)BC=3xAC=4x,AB=5x

3x2+4x2=5x2,∴△ABC是直角三角形,故本選項不符合題意;

D.A+∠B+∠C=180°,∠A:∠B:∠C=3:4:5,∴∠A=45°,∠5=60°,∠C=75°,∴△ABC不是直角三角形,故本選項符合題意

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形ABC中, D,E,F三點分別在AB,ACBC上,過點D的直線與線段EF的交點為點M,已知2∠1-∠2=150°,2∠ 2-∠1=30°.

(1)求證:DMAC;

(2)若DEBC,∠C =50°,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于實數(shù),定義兩種新運算“※”和“”: ,(其中為常數(shù),且,若對于平面直角坐標(biāo)系中的點,有點的坐標(biāo)與之對應(yīng),則稱點的“衍生點”為點.例如:的“2衍生點”為,即

1)點的“3衍生點”的坐標(biāo)為  ;

2)若點的“5衍生點” 的坐標(biāo)為,求點的坐標(biāo);

3)若點的“衍生點”為點,且直線平行于軸,線段的長度為線段長度的3倍,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某臺風(fēng)中心位于O點,臺風(fēng)中心以 的速度向北偏西方向移動,在半徑的范圍內(nèi)將受影響,城市AO點正西方向與O點相距處,試問:

1市是否會受此臺風(fēng)影響,并說明理由;

2)如受影響,則受影響的時間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥ABE,F(xiàn)AC上,BD=DF;

證明:(1)CF=EB.

(2)AB=AF+2EB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售有甲、乙兩種商品,甲商品每件進(jìn)價10元,售價15元;乙商品每件進(jìn)價30元,售價40.

(1)若該超市一次性購進(jìn)兩種商品共60件,且恰好用去1600元,問購進(jìn)甲、乙兩種商品各多少件?

(2)若該超市要使兩種商品共60件的購進(jìn)費用不超過1240元,且總利潤(利潤=售價-進(jìn)價)不少于450元,請你幫助該超市設(shè)計相應(yīng)的進(jìn)貨方案,并指出使該超市利潤最大的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD的兩邊AB,AD的長是關(guān)于x的方程x2mx0的兩個實數(shù)根.

(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

(2)AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別相交于點A、B,再將△A0B沿直錢CD折疊,使點A與點B重合.折痕CD與x軸交于點C,與AB交于點D.

(1)點A的坐標(biāo)為  ;點B的坐標(biāo)為  ;

(2)求OC的長度,并求出此時直線BC的表達(dá)式;

(3)直線BC上是否存在一點M,使得△ABM的面積與△ABO的面積相等?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】景觀大道要進(jìn)行綠化改造,已知購買A種樹苗3棵,B種樹苗4棵,需要370元;購買A種樹苗5棵,B種樹苗2棵,需要430

1)求購買AB兩種樹苗每棵各需多少元?

2)現(xiàn)需購買這兩種樹苗共100棵,要求購買這兩種樹苗的資金不超過5860元,求最多能購買多少棵A種樹苗?

查看答案和解析>>

同步練習(xí)冊答案