【題目】某臺風(fēng)中心位于O點(diǎn),臺風(fēng)中心以 的速度向北偏西方向移動,在半徑的范圍內(nèi)將受影響,城市AO點(diǎn)正西方向與O點(diǎn)相距處,試問:

1市是否會受此臺風(fēng)影響,并說明理由;

2)如受影響,則受影響的時間有多長?

【答案】1)受影響(24小時

【解析】

根據(jù)題意作圖,(1)作ABOD,利用勾股定理求出AB的距離,與臺風(fēng)的半徑比較即可得到是否受臺風(fēng)影響;(2)設(shè)C點(diǎn)開始受影響,D點(diǎn)影響結(jié)束,利用勾股定理求出CD的距離,即可求出受影響的時間.

1)作ABOD,由題意得∠AOB=30°,AO=160km,

RtABO中,AB==80km,故A點(diǎn)受影響;

2)設(shè)C點(diǎn)開始受影響,D點(diǎn)影響結(jié)束,依題意得AC=100km,

AB=80km,

BC==60km,

同理知BD=60km,

CD=120km,

所以受影響的時間為(小時)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長方形OACB的頂點(diǎn)A,B分別在x,y軸上,已知OA3,點(diǎn)Dy軸上一點(diǎn),其坐標(biāo)為(0,1),CD5,點(diǎn)P從點(diǎn)A出發(fā)以每秒1個單位的速度沿線段ACB的方向運(yùn)動,當(dāng)點(diǎn)P與點(diǎn)B重合時停止運(yùn)動,運(yùn)動時間為t

1)求B,C兩點(diǎn)坐標(biāo);

2)①求OPD的面積S關(guān)于t的函數(shù)關(guān)系式;

②當(dāng)點(diǎn)D關(guān)于OP的對稱點(diǎn)E落在x軸上時,求點(diǎn)E的坐標(biāo);

3)在(2)②情況下,直線OP上求一點(diǎn)F,使FE+FA最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1A型車和3B型車,銷售額為96萬元;本周已售出2A型車和1B型車,銷售額為62萬元.

1)求每輛A型車和B型車的售價各為多少萬元?

2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,且A型號車不少于2輛,購車費(fèi)不少于130萬元,則有哪幾種購車方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是△的外角的平分線,交的延長線于點(diǎn),延長交△的外接圓于點(diǎn),連接,

)求證:

)已知,若是△外接圓的直徑, ,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)A(-3,0),點(diǎn)B(3,0),點(diǎn)Dy軸上的一個動點(diǎn),連接BD,將線段BD繞點(diǎn)B逆時針旋轉(zhuǎn)60°,得到線段BE,連接DE,得到△BDE,則OE的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過點(diǎn)DDEAB,于點(diǎn)E

1)求證:△ACD≌△AED;

2)若∠B=30°CD=1,求BD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滿足下列條件的△ABC不是直角三角形的是()

A. BC=1,AC=2,AB=

B. BC=1,AC=2,AB=

C. BC:AC:AB=3:4:5

D. ∠A:∠B:∠C=3:4:5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下,若每千克漲價1元,日銷量減少20千克。

(1)如果該商場要保證每天盈利6000元,同時又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價多少元?

(2)當(dāng)每千克漲價多少元時,該商場的每天盈利最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC、△BDE都是等腰直角三角形,∠ABC=∠DBE90°,連接AE、CD交于點(diǎn)F,連接BF.求證:

1AECD

2BF平分∠AFD

查看答案和解析>>

同步練習(xí)冊答案