【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖2,下列關(guān)于圖2的結(jié)論中,不一定成立的是( )
A.DE∥BCB.△DBA是等腰三角形
C.點A落在BC邊的中點D.∠B+∠C+∠1=180°
【答案】C
【解析】
根據(jù)中位線定理,可以判斷A選項正確;根據(jù)折疊的性質(zhì),且D為AB中點,可知BD=AD,故B選項正確;根據(jù)折疊的性質(zhì),可判斷AD=DB,AE=EC,而不能判斷BA=AC,故C選項錯誤;因為∠B+∠C+∠A=180°,根據(jù)折疊的性質(zhì)知∠A=∠1,故∠B+∠C+∠1=180°,故D選項正確.
解:∵在△ABC中,D、E分別是AB、AC的中點,
∴DE∥BC;
故A選項正確;
∵由折疊的性質(zhì)可得:BD=AD,
∴△DBA是等腰三角形;
故B選項正確;
由折疊的性質(zhì)可得:AD=BD,AE=EC,
但不能確定AB=AC,
故C選項錯誤;
∵在△ABC中,∠A+∠B+∠C=180°,
由折疊的性質(zhì)可得:∠A=∠1,
∴∠B+∠C+∠1=180°.
故D選項正確.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,從地面上的點A看一山坡上的電線桿PQ,測得桿頂端點P的仰角是45°,向前走9m到達(dá)B點,測得桿頂端點P和桿底端點Q的仰角分別是60°和30°.
(1)求∠BPQ的度數(shù);
(2)求該電線桿PQ的高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形的兩個內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準(zhǔn)互余三角形”.在Rt△ABC中,∠ACB=90°,AC=6,BC=8.點D是BC邊上一點,連接AD,若△ABD是準(zhǔn)互余三角形,則BD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游泳池每次換水前后水的體積基本保持不變,當(dāng)該游泳池以每小時300立方米的速度放水時,經(jīng)3小時能將池內(nèi)的水放完.設(shè)放水的速度為x立方米/時,將池內(nèi)的水放完需y小時.已知該游泳池每小時的最大放水速度為350立方米
(1)求y關(guān)于x的函數(shù)表達(dá)式.
(2)若該游泳池將放水速度控制在每小時200立方米至250立方米(含200立方米和250立方米),求放水時間y的范圍.
(3)該游泳池能否在2.5小時內(nèi)將池內(nèi)的水放完?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)《N家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定:九年級男生坐位體前屈達(dá)到17.8厘米及以上為優(yōu)秀;達(dá)到13.8厘米至17.7厘米為良好;達(dá)到-0.2厘米至13.7厘米為及格;達(dá)到-0.3厘米及以下為不及格,某校為了了解九年級男生的身體柔韌性情況,從該校九年級男生中隨機(jī)抽取了20%的學(xué)生進(jìn)行坐位體前屈測試,并把測試結(jié)果繪制成如圖所示的統(tǒng)計表和扇形統(tǒng)計圖(部分信息不完整),請根據(jù)所給信息解答下列問題.
某校九年級若干男生坐位體前屈成績統(tǒng)計表
成績(厘米) | 等級 | 人數(shù) |
≥17.8 | 優(yōu)秀 | |
13.8~17.7 | 良好 | |
0.2~13.7 | 及格 | 15 |
≤-0.3 | 不及格 |
(1)求參加本次坐位體前屈測試的人數(shù);
(2)求a,b,c的值;
(3)試估計該年級男生中坐位體前屈成績不低于13.8厘米的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點從點運動到點停止,連接,以長為直徑作.
(1)若,求的半徑;
(2)當(dāng)與相切時,求的面積;
(3)連接,在整個運動過程中,的面積是否為定值,如果是,請直接寫出面積的定值,如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D,E分別在AB,BC上,∠EAD=∠EDA,點F為DE的延長線與AC的延長線的交點.
(1)求證:DE=EF;
(2)判斷BD和CF的數(shù)量關(guān)系,并說明理由;
(3)若AB=3,AE=,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ABD,點E在邊AB上,CE∥BD,連接DE.
求證:(1)∠CEB=∠CBE;
(2)四邊形BCED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一批成本為每件 30 元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量 y(件)與銷售單價 x(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求該商品每天的銷售量 y 與銷售單價 x 之間的函數(shù)關(guān)系式;
(2)若商店按單價不低于成本價,且不高于 50 元銷售,則銷售單價定為多少,才能使銷售該商品每天獲得的利潤 w(元)最大?最大利潤是多少?
(3)若商店要使銷售該商品每天獲得的利潤不低于 800 元,則每天的銷售量最少應(yīng)為多少件?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com