【題目】如圖,將矩形ABCD沿GH對(duì)折,點(diǎn)C落在Q處,點(diǎn)D落在AB邊上E處,EQBC相交于F,若AD8 cm,AB6 cm,AE4cm,則EBF的周長(zhǎng)是______________ cm.

【答案】8.

【解析】試題分析:BE=AB-AE=2.設(shè)AH=x,則DH=AD﹣AH=8﹣x,在Rt△AEH中,∠EAH=90°,AE=4AH=x,EH=DH=8﹣x,∴EH2=AE2+AH2,即(8﹣x2=42+x2,解得:x=3∴AH=3,EH=5.∴CAEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,

∴CEBF==CHAE=8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)圖1所示的程序,得到了yx的函數(shù)圖象,如圖2.若點(diǎn)My軸正半軸上任意一點(diǎn),過(guò)點(diǎn)MPQx軸交圖象于點(diǎn)P,Q,連接OP,OQ.則以下結(jié)論:

x<0時(shí),;②△OPQ的面積為定值; ③x>0時(shí),yx的增大而增大; ④MQ=2PM;⑤∠POQ可以等于90°.

其中正確結(jié)論是( )

A. ①②④ B. ②④⑤ C. ③④⑤ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD是⊙O的弦,AB是直徑,且CD∥AB,連接AC、AD、OD,其中AC=CD,過(guò)點(diǎn)B的切線交CD的延長(zhǎng)線于E.

(1)求證:DA平分∠CDO;

(2)若AB=12,求圖中陰影部分的周長(zhǎng)之和(參考數(shù)據(jù):π=3.1,=1.4,=1.7).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)寫出命題“兩直線平行,同位角相等”的題設(shè)和結(jié)論:

題設(shè):_____________________,

結(jié)論:_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】楊陽(yáng)同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過(guò)程中,通過(guò)隔離帶的空隙O,剛好瀏覽完對(duì)面人行道宣傳墻上的社會(huì)主義核心價(jià)值觀標(biāo)語(yǔ),其具體信息匯集如下:

如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請(qǐng)根據(jù)上述信息求標(biāo)語(yǔ)CD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點(diǎn),直線MN經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)A作直線MN的垂線,垂足為點(diǎn)D,且∠BAC=∠CAD.

(1)求證:直線MN是⊙O的切線;

(2)若CD=3,∠CAD=30°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某建筑物AC頂部有一旗桿AB,且點(diǎn)A,BC在同一條直線上,小明在地面D處觀測(cè)旗桿頂端B的仰角為30°,然后他正對(duì)建筑物的方向前進(jìn)了20米到達(dá)地面的E處,又測(cè)得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結(jié)果精確到0.1米).參考數(shù)據(jù):≈1.73≈1.41

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)C、D⊙O上,∠A=2∠BCD,點(diǎn)EAB的延長(zhǎng)線上,∠AED=∠ABC

1)求證:DE⊙O相切;

2)若BF=2,DF=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的面積為1cm2,對(duì)角線交于點(diǎn)O;以AB、AO為鄰邊做平行四邊形AOC1B,對(duì)角線交于點(diǎn)O1;以ABAO1為鄰邊做平行四邊形AO1C2B……;依此類推,則平行四邊形的面積為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案