【題目】如圖,已知是原點,兩點的坐標分別為,.

1)以點為位似中心,在軸的左側將擴大為原來的兩倍(即新圖與原圖的相似比為),畫出圖形,并寫出點的對應點的坐標;

2)如果內部一點的坐標為,寫出點的對應點的坐標.

【答案】1)如圖,即為所求,見解析;點的對應點的坐標為,點的對應點的坐標為;(2)點的對應點的坐標為.

【解析】

1)延長BO,COB′C′,使OB′、OC′的長度是OB、OC2倍.順次連接三點即可;
2)從這兩個相似三角形坐標位置關系來看,對應點的坐標正好是原坐標乘以-2的坐標,所以M的坐標為(x,y),寫出M的對應點M′的坐標為(-2x-2y).

1)如圖,即為所求,點的對應點的坐標為,點的對應點的坐標為.

2)從這兩個相似三角形坐標位置關系來看,對應點的坐標正好是原坐標乘以-2的坐標,所以M的坐標為(x,y),寫出M的對應點M′的坐標為(-2x,-2y).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為  ▲  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O半徑為AB是⊙O的一條弦,且AB=3,則弦AB所對的圓周角度數(shù)是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADBC,∠ABC90°,AD3,AB4,點P為射線BC上一動點,以P為圓心,BP長為半徑作⊙P,交射線BC于點Q,聯(lián)結BD、AQ相交于點G,⊙P與線段BD、AQ分別相交于點EF

1)如果BEFQ,求⊙P的半徑;

2)設BPxFQy,求y關于x的函數(shù)關系式,并寫出x的取值范圍;

3)聯(lián)結PE、PF,如果四邊形EGFP是梯形,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC是邊長為6cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當點P到達點B時,PQ兩點停止運動,設點P的運動時間t(s)

解答下列各問題:

(1)求△ABC的面積

(2)t為何值時,△PBQ是直角三角形?

(3)設四邊形APQC的面積為y(cm2),求yt的關系式;

(4)是否存在某一時刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出t的值:不存在請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一條長為40cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.

1)要使這兩個正方形的面積之和等于52cm2,那么這段鐵絲剪成兩段后的長度分別是多少?

2)兩個正方形的面積之和可能等于48cm2嗎?若能,求出兩段鐵絲的長度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC三個頂點的坐標分別為A(2,4)B(1,1),C(43).

1請畫出ABC關于原點對稱的A1B1C1,并寫出A1,B1,C1的坐標;

2請畫出ABC 繞點B逆時針旋轉90°后的A2B2C2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,窗簾的褶皺是指按照窗戶的實際寬度將窗簾布料以一定比例加寬的做法,褶皺之后的窗簾更能彰顯其飄逸、靈動的效果.其中,窗寬度的1.5倍為平褶皺,窗寬度的2倍為波浪褶皺.如圖②,小莉房間的窗戶呈長方形,窗戶的寬度(AD)比高度(AB)的少0.5m,某種窗簾的價格為120/m2.如果以波浪褶皺的方式制作該種窗簾比以平褶皺的方式費用多180元,求小莉房間窗戶的寬度與高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引更多的顧客,安排了一個抽獎活動,并規(guī)定:顧客每購買100元商品,就能獲得一次抽獎的機會.抽獎規(guī)則如下:在抽獎箱內,100個牌子,分別寫有1,2,3,…,100100個數(shù)字,抽到末位數(shù)是5的可獲20元購物券,抽到數(shù)字是88的可獲200元購物券,抽到6699的可獲100元購物券.某顧客購物用了130,他獲得購物券的概率是多少?他獲得20元、100元、200元購物券的概率分別是多少?

查看答案和解析>>

同步練習冊答案