【題目】如圖,矩形ABCD中,BC4,將矩形ABCD繞點C順時針旋轉(zhuǎn)得到矩形ABCD'.設(shè)旋轉(zhuǎn)角為α,此時點B恰好落在邊AD上,連接B'B

1)當(dāng)B'恰好是AD中點時,此時α   

2)若∠AB'B75°,求旋轉(zhuǎn)角αAB的長.

【答案】160°;

22

【解析】

1)作垂直BCE,根據(jù)題意求出,CE=2,即可得出答案;

2)根據(jù)內(nèi)角和求出∠ABB',再根據(jù)余角求出∠CBB'75°,進(jìn)而得到∠CBB'=∠CB'B=75°,再求出∠BCB',即可得出答案.

解:(1)作垂直BCE

根據(jù)旋轉(zhuǎn)性質(zhì)可知,

B'恰好是AD中點

CE=2

在直角三角形中,CE=2

2)∵∠AB'B75°

∴∠ABB'15°

∴∠CBB'75°

∴∠CBB'=∠CB'B=75°

∴∠BCB'=180°-75°-75°=30°

AB=2

故旋轉(zhuǎn)角α30°,AB的長為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ly3x3分別與x軸,y軸交于點A,點B,拋物線yax22ax+a4過點B

1)求拋物線的解析式;

2)點C是第四象限拋物線上一動點,連接ACBC

①當(dāng)ABC的面積最大時,求點C的坐標(biāo)及ABC面積的最大值;

②在①的條件下,將直線l繞著點A逆時針方向旋轉(zhuǎn)到直線l',l'與線段BC交于點D,設(shè)點B,點Cl'的距離分別為d1d2,當(dāng)d1+d2最大時,求直線l旋轉(zhuǎn)的角度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展校園美德少年評選活動,共有助人為樂,自強(qiáng)自立、孝老愛親,誠實守信四種類別,每位同學(xué)只能參評其中一類,評選后,把最終入選的20位校園美德少年分類統(tǒng)計,制作了如下統(tǒng)計表,后來發(fā)現(xiàn),統(tǒng)計表中前兩行的數(shù)據(jù)都是正確的,后兩行的數(shù)據(jù)中有一個是錯誤的.

類別

頻數(shù)

頻率

助人為樂美德少年

a

0.20

自強(qiáng)自立美德少年

3

b

孝老愛親美德少年

7

0.35

誠實守信美德少年

6

0.32

根據(jù)以上信息,解答下列問題:

1)統(tǒng)計表中的a   ,b   

2)統(tǒng)計表后兩行錯誤的數(shù)據(jù)是   ,該數(shù)據(jù)的正確值是   ;

3)校園小記者決定從A,B,C三位自強(qiáng)自立美德少年中隨機(jī)采訪兩位,用畫樹狀圖或列表的方法,求A,B都被采訪到的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組借助無人飛機(jī)航拍校園.如圖,無人飛機(jī)從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°B處的仰角為30°.已知無人飛機(jī)的飛行速度為4/秒,求這架無人飛機(jī)的飛行高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在校園體育文化節(jié)活動中組織了球類知識我知道的競賽活動,從初三年級1200名學(xué)生中隨機(jī)抽查了100名學(xué)生的成績(滿分30分),整理得到如下的統(tǒng)計圖表:

成績(分)

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

人數(shù)

1

2

3

3

6

7

5

8

15

9

11

12

8

6

4

頻率統(tǒng)計表

成績分組

頻數(shù)

頻率

15≤x18

3

0.03

18≤x21

a

0.12

21≤x24

20

0.20

24≤x27

35

0.35

27≤x≤30

30

b

頻數(shù)分布直方圖

請根據(jù)所提供的信息解答下列問題:

1)樣本的眾數(shù)是   分,中位數(shù)是   分;

2)頻率統(tǒng)計表中a   ,b   ;補(bǔ)全頻數(shù)分布直方圖;

3)請根據(jù)抽樣統(tǒng)計結(jié)果,估計該次競賽中初三年級成績不少于21分的大約有多少人?隨機(jī)抽取一名同學(xué)的成績,其值不小于24分的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)一點,且PA6,PB8,PC10,若將△PAC繞點A逆時針旋轉(zhuǎn)后得到△P'AB.給出下列四個結(jié)論:PP'6,AP2+BP2CP2APB150°;SABC36+25.正確結(jié)論個數(shù)為( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,△ABC的頂點均在格點上,請在所給直角坐標(biāo)系中按要求畫圖和解答下列問題:

1)將△ABC沿x軸翻折后再沿x軸向右平移1個單位,在圖中畫出平移后的△A1B1C1

2)作△ABC關(guān)于坐標(biāo)原點成中心對稱的△A2B2C2

3)求B1的坐標(biāo)   C2的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一幅長為60 cm,寬為40 cm的矩形風(fēng)景畫的四周鑲一條相同寬度的紙邊,制成一幅矩形掛圖.若要使整個掛圖的面積是3 500 cm2,設(shè)紙邊的寬為x cm,則根據(jù)題意可列方程為(   )

A. (60+x)(40+x)=3 500 B. (60+2x)(40+2x)=3 500

C. (60-x)(40-x)=3 500 D. (60-2x)(40-2x)=3 500

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在一次社會實踐活動中,通過對某種蔬菜在1月份至7月份的市場行情進(jìn)行統(tǒng)計分析后得出如下規(guī)律:

①該蔬菜的銷售價(單位:元/千克)與時間(單位:月份)滿足關(guān)系 ;

②該蔬菜的平均成本(單位:元/千克)與時間(單位:月份)滿足二次函數(shù)關(guān)系已知4月份的平均成本為2/千克,6月份的平均成本為1/千克.

1)求該二次函數(shù)的解析式;

2)請運用小明統(tǒng)計的結(jié)論,求出該蔬菜在第幾月份的平均利潤(單位:元/千克)最大?最大平均利潤是多少?(注:平均利潤銷售價平均成本)

查看答案和解析>>

同步練習(xí)冊答案