【題目】水果店購進(jìn)某種水果的成本為10元/千克,經(jīng)市場調(diào)研,獲得銷售單價(jià)p(元/千克)與銷售時(shí)間t(1≤t≤15,t為整數(shù))(天)之間的部分?jǐn)?shù)據(jù)如下表:
銷售時(shí)間t(1≤t≤15,t為整數(shù))(天) | 1 | 4 | 5 | 8 | 12 |
銷售單價(jià)p(元/千克) | 20.25 | 21 | 21.25 | 22 | 23 |
已知p與t之間的變化規(guī)律符合一次函數(shù)關(guān)系.
(1)試求p關(guān)于t的函數(shù)表達(dá)式;
(2)若該水果的日銷量y(千克)與銷售時(shí)間t(天)的關(guān)系滿足一次函數(shù)y=-2t+120(1≤t≤15,t為整數(shù)).
① 求銷售過程中最大日銷售利潤為多少?
② 在實(shí)際銷售的前12天中,公司決定每銷售1千克水果就捐贈n元利潤(n<3)給“精準(zhǔn)扶貧”對象.現(xiàn)發(fā)現(xiàn):在前12天中,每天扣除捐贈后的日銷售利潤隨時(shí)間t的增大而增大,求n的取值范圍
【答案】(1)p=t+20(1≤t≤15,t為整數(shù));(2)①1250元;②1≤n<3
【解析】
(1)設(shè)p=kt+b,利用待定系數(shù)法即可解決問題;
(2)日利潤=日銷售量×每公斤利潤,根據(jù)函數(shù)性質(zhì)求最大值后比較得結(jié)論;
(3)列式表示前12天中每天扣除捐贈后的日銷售利潤,根據(jù)函數(shù)性質(zhì)求n的取值范圍.
解:(1)設(shè)p與t之間的變化的一次函數(shù)關(guān)系為:p=kt+b,
將點(diǎn)(4,21)、(8,22)代入上式得:,解得:,
故p關(guān)于t的函數(shù)表達(dá)式為:p=t+20(1≤t≤15,t為整數(shù));
(2)①設(shè)日銷售利潤為w,由題意得:
w=y(p-10)=(-2t+120) (t+10)
=-t2+10t+1200
=-(t-10)2+1250(1≤t≤15,t為整數(shù)),
∵<0,故w有最大值,
∴當(dāng)t=10時(shí),w的最大值為1250;
故銷售過程中最大日銷售利潤為1250元;
②設(shè)捐贈后的日銷售利潤為m,由題意得:
m=w-n=t2+10t+1200-n(-2t+120)
=t2+10t+1200+2nt-120n
=-t2+(10+2n)t+1200-120n,
∵在前12天中,每天扣除捐贈后的日銷售利潤隨時(shí)間t的增大而增大,
∴,
∴n≥1.
又∵n<3,
∴n的取值范圍為1≤n<3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,動點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與y軸,x軸分別相交于點(diǎn)A、B.點(diǎn)D是x軸上動點(diǎn),點(diǎn)D從點(diǎn)B出發(fā)向原點(diǎn)O運(yùn)動,點(diǎn)E在點(diǎn)D右側(cè),DE=2BD.過點(diǎn)D作DH⊥AB于點(diǎn)H,將△DBH沿直線DH翻折,得到△DCH,連接CE.設(shè)BD=t,△DCE與△AOB重合部分面積為S.求:
(1)求線段BC的長(用含t的代數(shù)式表示);
(2)求S關(guān)于t的函數(shù)解析式,并直接寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)點(diǎn)M是的中點(diǎn),CM交AB于點(diǎn)N,若AB=6,求MNMC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=∠PBD.延長PD交圓的切線BE于點(diǎn)E.
(1)證明:直線PD是⊙O的切線;
(2)如果∠BED=60°,PD=,求PA的長;
(3)將線段PD以直線AD為對稱軸作對稱線段DF,點(diǎn)F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1,△ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2,△AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn=____.(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的兩條直角邊AB=4cm,AC=3cm,點(diǎn)D沿AB從A向B運(yùn)動,速度是1cm/秒,同時(shí),點(diǎn)E沿BC從B向C運(yùn)動,速度為2cm/秒. 動點(diǎn)E到達(dá)點(diǎn)C時(shí)運(yùn)動終止.連結(jié)DE、CD、AE.(1)填空:當(dāng)動點(diǎn)運(yùn)動_______ 秒時(shí),△BDE與△ABC相似?
(2)設(shè)動點(diǎn)運(yùn)動t秒時(shí)△ADE的面積為s,求s與t的函數(shù)解析式;
(3)在運(yùn)動過程中是否存在某一時(shí)刻t,使CD⊥DE?若存在,求出時(shí)刻t;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-1.5,0),B(0,2),將△ABO順著x軸的正半軸無滑動的滾動,第一次滾動到①的位置,點(diǎn)B的對應(yīng)點(diǎn)記作B1;第二次滾動到②的位置,點(diǎn)B1的對應(yīng)點(diǎn)記作B2;第三次滾動到③的位置,點(diǎn)B2的對應(yīng)點(diǎn)記作B3;;依次進(jìn)行下去,則點(diǎn)B2020的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的圖象,經(jīng)過點(diǎn)A(1,0),B(3,0),C(0,3)三點(diǎn),過點(diǎn)C,D(﹣3,0)的直線與拋物線的另一交點(diǎn)為E.
(1)請你直接寫出:
①拋物線的解析式 ;
②直線CD的解析式 ;
③點(diǎn)E的坐標(biāo)( , );
(2)如圖1,若點(diǎn)P是x軸上一動點(diǎn),連接PC,PE,則當(dāng)點(diǎn)P位于何處時(shí),可使得∠CPE=45°,請你求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)Q是拋物線上一動點(diǎn),作QH⊥x軸于H,連接QA,QB,當(dāng)QB平分∠AQH時(shí),請你直接寫出此時(shí)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com