【題目】如圖,為線(xiàn)段上一動(dòng)點(diǎn)(不與點(diǎn),重合),在同側(cè)分別作等邊和等邊交于點(diǎn),交于點(diǎn)交于點(diǎn),連接.下列五個(gè)結(jié)論:①;②;③;④DE=DP;⑤.其中正確結(jié)論的個(gè)數(shù)是( )

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

【答案】C

【解析】

①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;
②由△ACD≌△BCE得∠CBE=DAC,加之∠ACB=DCE=60°,AC=BC,得到△CQB≌△CPAASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線(xiàn)平行,可知②正確;
③根據(jù)②△CQB≌△CPAASA),可知③正確;
④根據(jù)∠DQE=ECQ+CEQ=60°+CEQ,∠CDE=60°,可知∠DQE≠CDE,可知④錯(cuò)誤;
⑤由BCDE,得到∠CBE=BED,由∠CBE=DAE,得到∠AOB=OAE+AEO=60°.

解:∵等邊△ABC和等邊△CDE
AC=BC,CD=CE,∠ACB=DCE=60°,
∴∠ACB+BCD=DCE+BCD,即∠ACD=BCE,
在△ACD與△BCE中,

,

∴△ACD≌△BCESAS),
AD=BE, 故①正確,
∵△ACD≌△BCE
∴∠CBE=DAC,
又∵∠ACB=DCE=60°,
∴∠BCD=60°,即∠ACP=BCQ,
又∵AC=BC,
∴△CQB≌△CPAASA),
CP=CQ,
又∵∠PCQ=60°可知△PCQ為等邊三角形,
∴∠PQC=DCE=60°,
PQAE 故②正確,
∵△CQB≌△CPA,
AP=BQ 故③正確,
AD=BE,AP=BQ
AD-AP=BE-BQ,
DP=QE
∵∠DQE=ECQ+CEQ=60°+CEQ,∠CDE=60°
∴∠DQE≠CDE,故④錯(cuò)誤;
BCDE,
∴∠CBE=BED,
∵∠CBE=DAE
∴∠AOB=OAE+AEO=60°,故⑤正確;

綜上所述,正確的有4個(gè),

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC=BC,DAB中點(diǎn),CEAB,CE=AB.

(1)求證:四邊形CDBE是矩形.

(2)若AC=5,CD=3,F(xiàn)BC上一點(diǎn),且DFBC,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)經(jīng)過(guò)A(2,0). 設(shè)頂點(diǎn)為點(diǎn)P,與x軸的另一交點(diǎn)為點(diǎn)B.

(1)求b的值,求出點(diǎn)P、點(diǎn)B的坐標(biāo);

(2)如圖,在直線(xiàn) 上是否存在點(diǎn)D,使四邊形OPBD為平行四邊形?若存在,求出點(diǎn)D的坐

標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)在x軸下方的拋物線(xiàn)上是否存在點(diǎn)M,使AMP≌△AMB?如果存在,試舉例驗(yàn)證你的猜想;如果不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,∠ABC和∠ACB的角平分線(xiàn)相交于點(diǎn)P,且PEABPFAC,垂足分別為E、F

1)求證:PE=PF

2)若∠BAC=60°,連接AP,求∠EAP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4ADBC邊上的中線(xiàn),FAD邊上的動(dòng)點(diǎn),EAC邊上一點(diǎn)AE2當(dāng)EFCF取得最小值時(shí),∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,的平分線(xiàn)與的垂直平分線(xiàn)交于點(diǎn),將沿(上,)折疊,點(diǎn)與點(diǎn)恰好重合,則____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P⊙O的直徑AB的延長(zhǎng)線(xiàn)上,PC⊙O的切線(xiàn),點(diǎn)C為切點(diǎn),連接AC,過(guò)點(diǎn)APC的垂線(xiàn),點(diǎn)D為垂足,AD⊙O于點(diǎn)E.

(1)如圖1,求證:∠DAC=∠PAC;

(2)如圖2,點(diǎn)F(與點(diǎn)C位于直徑AB兩側(cè))在⊙O上,,連接EF,過(guò)點(diǎn)FAD的平行線(xiàn)交PC于點(diǎn)G,求證:FG=DE+DG;

(3)(2)的條件下,如圖3,若AE=DG,PO=5,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察圖,先填空,然后回答問(wèn)題

1)由上而下第行的白球與黑球總數(shù)比第行多 個(gè).若第行白球與黑球的總數(shù)記作,寫(xiě)出的關(guān)系式.

2)求出第行白球與黑球的總數(shù)可能是個(gè)嗎?如果是,求出的值;如果不是,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)軸、軸分別相交于點(diǎn)C、B,與直線(xiàn)相交于點(diǎn)A.

(1)求A點(diǎn)坐標(biāo);

(2)如果在y軸上存在一點(diǎn)P,使△OAP是以O(shè)A為底邊的等腰三角形,求P點(diǎn)坐標(biāo);

(3)在直線(xiàn)上是否存在點(diǎn)Q,使△OAQ的面積等于6?若存在,請(qǐng)求出Q點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案