【題目】圖1是一種三角車(chē)位鎖,其主體部分是由兩條長(zhǎng)度相等的鋼條組成.當(dāng)位于頂端的小掛鎖打開(kāi)時(shí),鋼條可放入底盒中(底盒固定在地面下),此時(shí)汽車(chē)可以進(jìn)入車(chē)位;當(dāng)車(chē)位鎖上鎖后,鋼條按圖1的方式立在地面上,以阻止底盤(pán)高度低于車(chē)位鎖高度的汽車(chē)進(jìn)入車(chē)位.圖2是其示意圖,經(jīng)測(cè)量,鋼條AB=AC=50cm,∠ABC=47°.
(1)求車(chē)位鎖的底盒長(zhǎng)BC.
(2)若一輛汽車(chē)的底盤(pán)高度為30cm,當(dāng)車(chē)位鎖上鎖時(shí),問(wèn)這輛汽車(chē)能否進(jìn)入該車(chē)位?(參考數(shù)據(jù):sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)
【答案】(1)68cm;(2)當(dāng)車(chē)位鎖上鎖時(shí),這輛汽車(chē)不能進(jìn)入該車(chē)位
【解析】
(1)過(guò)點(diǎn)A作AH⊥BC于點(diǎn)H,根據(jù)銳角三角函數(shù)的定義即可求出答案.
(2)根據(jù)銳角三角函數(shù)的定義求出AH的長(zhǎng)度即可判斷.
解:(1)過(guò)點(diǎn)A作AH⊥BC于點(diǎn)H,
∵AB=AC,
∴BH=HC,
在Rt△ABH中,∠B=47°,AB=50,
∴BH=ABcosB=50cos47°≈50×0.68=34,
∴BC=2BH=68cm.
(2)在Rt△ABH中,
∴AH=ABsinB=50sin47°≈50×0.73=36.5,
∴36.5>30,
∴當(dāng)車(chē)位鎖上鎖時(shí),這輛汽車(chē)不能進(jìn)入該車(chē)位.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】受新型冠狀病毒疫情的影響,某市教育主管部門(mén)在推遲各級(jí)學(xué)校返校時(shí)間的同時(shí)安排各個(gè)學(xué)校開(kāi)展形式多樣的網(wǎng)絡(luò)教學(xué),學(xué)校計(jì)劃在每周三下午15:30至16:30為學(xué)生提供以下四類(lèi)學(xué)習(xí)方式供學(xué)生選擇:在線閱讀、微課學(xué)習(xí)、線上答疑、在線討論,為了解學(xué)生的需求,通過(guò)網(wǎng)絡(luò)對(duì)部分學(xué)生進(jìn)行了“你對(duì)哪類(lèi)在線學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù);
(2)請(qǐng)求出“線上答疑”在扇形統(tǒng)計(jì)圖中的圓心角度數(shù);
(3)笑笑和瑞瑞同時(shí)參加了網(wǎng)絡(luò)學(xué)習(xí),請(qǐng)求出笑笑和瑞瑞選擇同一種學(xué)習(xí)方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,連結(jié),點(diǎn)在射線上,以為邊在上方作,作,連結(jié).
(1)當(dāng)點(diǎn)在線段上時(shí),證明:;
(2)若時(shí),求的面積;
(3)的外接圓交射線于點(diǎn),作直線交直線于點(diǎn),交直線于點(diǎn),連接,若,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游樂(lè)園有一個(gè)直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向?yàn)?/span>x軸,噴水池中心為原點(diǎn)建立直角坐標(biāo)系.
(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;
(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時(shí)必須在離水池中心多少米以?xún)?nèi)?
(3)經(jīng)檢修評(píng)估,游樂(lè)園決定對(duì)噴水設(shè)施做如下設(shè)計(jì)改進(jìn):在噴出水柱的形狀不變的前提下,把水池的直徑擴(kuò)大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請(qǐng)?zhí)骄繑U(kuò)建改造后噴水池水柱的最大高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).
解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最?若存在,求出y的最小值;若不存在,說(shuō)明理由.
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:三角形一個(gè)內(nèi)角的平分線和與另一個(gè)內(nèi)角相鄰的外角平分線相交所成的銳角稱(chēng)為該三角形第三個(gè)內(nèi)角的遙望角.
(1)如圖1,∠E是△ABC中∠A的遙望角,若∠A=α,請(qǐng)用含α的代數(shù)式表示∠E.
(2)如圖2,四邊形ABCD內(nèi)接于⊙O,=,四邊形ABCD的外角平分線DF交⊙O于點(diǎn)F,連結(jié)BF并延長(zhǎng)交CD的延長(zhǎng)線于點(diǎn)E.求證:∠BEC是△ABC中∠BAC的遙望角.
(3)如圖3,在(2)的條件下,連結(jié)AE,AF,若AC是⊙O的直徑.
①求∠AED的度數(shù);
②若AB=8,CD=5,求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是某小型汽車(chē)的側(cè)面示意圖,其中矩形表示該車(chē)的后備箱,在打開(kāi)后備箱的過(guò)程中,箱蓋可以繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn),當(dāng)旋轉(zhuǎn)角為時(shí),箱蓋落在的位置(將后備箱放大后如圖2所示).已知厘米,厘米,厘米.在圖2中求:
(1)點(diǎn)到的距離(結(jié)果保留根號(hào));
(2)、兩點(diǎn)的距離(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),點(diǎn)為軸正半軸上一點(diǎn),且,的面積是,則_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,、分別為邊、中點(diǎn),連接并延長(zhǎng)至點(diǎn),使得,連接.
(1)求證:;
(2)若,,求四邊形的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com