【題目】如圖,ABC中,EAC上一點,且AE=AB,∠BAC=2EBC ,以AB為直徑的⊙OAC于點D,交EB于點F

1)求證:BC與⊙O相切;

2)若AB=8BE=4,求BC的長.

【答案】1)證明見解析;(2BC=

【解析】

1)運用切線的判定,只需要證明ABBC即可,即證∠ABC=90°. 連接AF,依據(jù)直徑所對圓周角為90度,可以得到∠AFB=90°,依據(jù)三線合一可以得到2BAF=BAC,再結(jié)合已知條件進行等量代換可得∠BAF=EBC,最后運用直角三角形兩銳角互余及等量代換即可.

2)依據(jù)三線合一可以得到BF的長度,繼而算出∠BAF=EBC的正弦值,過EEG⊥BC于點G,利用三角函數(shù)可以解除EG的值,依據(jù)垂直于同一直線的兩直線平行,可得EGAB平行,從而得到相似三角形,依據(jù)相似三角形的性質(zhì)可以求出AC的長度,最后運用勾股定理求出BC的長度.

1)證明:連接AF

AB為直徑, ∴∠AFB=90°

又∵AE=AB,

∴2∠BAF=BAC,∠FAB+FBA=90°

又∵∠BAC=2EBC,

∴∠BAF=EBC,

∴∠FAB+FBA=EBC+FBA=90°

∴∠ABC=90°.即ABBC,

BC與⊙O相切;

2)解:過EEGBC于點G

AB=AE,∠AFB=90°,

BF=BE=×4=2,

sinBAF=

又∵∠BAF=EBC,

sinEBC=

又∵在EGB中,∠EGB=90°,

EG=BEsinEBC=4×=1,

EGBCABBC,

EGAB,

∴△CEG∽△CAB,

CE=,

AC=AE+CE=8+=

RtABC中,

BC=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小李經(jīng)營的車飾店銷售某品牌車漆修復(fù)液,已知其進價為40/支,試銷階段發(fā)現(xiàn)將售價定為80/支時,每天可銷售20支,后來為了擴大銷售量,小李適當降低了售價,銷售量y(支)與降價x(元)的關(guān)系如圖所示.

1)請仔細讀題,并補全下面表格:

降價x/

2

4

   

x

銷量y/

24

28

30

   

2)若要使得平均每天銷售這種修復(fù)液的利潤W最大,則每支修復(fù)液應(yīng)該降價多少元?最大的利潤W為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線軸、軸分別交于兩點,拋物線經(jīng)過兩點,與軸的另一個交點為,且.

1)求拋物線的解析式;

2)點上,點的延長線上,且,連接于點,點為第一象限內(nèi)的一點,當是以為斜邊的等腰直角三角形時,連接,設(shè)的長度為的面積為,請用含的式子表示,并寫出自變量的取值范圍;

3)在(2)的條件下,連接、,將沿翻折到的位置(對應(yīng)),若,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,取格點A、B、C并連接AB,BC.取格點D、E并連接,交AB于點F

(Ⅰ)AB的長等于_____;

(Ⅱ)若點G在線段BC上,且滿足AF+CGFG,請在如圖所示的網(wǎng)格中,用無刻度的直尺,確定點G的位置,并簡要說明點G的位置是如何找到的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A-2,m),B2,m),C3,mn)(n0)在同一個函數(shù)的圖象上,這個函數(shù)可能是( 。

A.yxB.y=﹣C.yx2D.y=﹣x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,ABC 中,AC=BC,∠ACB=90°.請用直角三角尺(僅可畫直角或直線)在圖中畫出一個點P,使得∠APB=45°;

2)如圖2ABC 中,AB=a,∠ACB=,請用直尺和圓規(guī)作出一個點Q,使點Q與點CAB同側(cè),QA=QB,∠AQB=;(不寫作法,保留作圖痕跡)

3)如圖3,若 AC=BC=,∠ACB=90°,以點A為原點,直線AB x 軸,過點A垂直于AB的直線為 y 軸,建立平面直角坐標系,直線y= - x+b(b>0) x 軸于點M,交 y 軸于點N.當點P在直線MN上,且∠APB=45°,求點P的個數(shù)及對應(yīng)的b的取值范圍;

4)如圖4,ABC 中,AB=a,∠ACB=,請用直尺和圓規(guī)作出點P,使得∠APB=AP+BP最大,請簡要說明理由.(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+c的圖象如圖所示,經(jīng)過(﹣1,0)、(3,0)、(0,﹣3).

1)求二次函數(shù)的解析式;

2)不等式ax2+bx+c0的解集為   

3)方程ax2+bx+cm有兩個實數(shù)根,m的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)已知,求一次函數(shù)所經(jīng)過的象限;

2)已知相似,且的三邊長分別為6、8、4,其中一邊長為2,試求的另外兩邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是等邊內(nèi)一點,且,點是邊的中點,連接.

1)如圖1,若點,三點共線,則的數(shù)量關(guān)系是______;

2)如圖2,若點,,三點不共線,問(1)中的結(jié)論還成立嗎?若成立,請給出證明,若不成立,請說明理由;

3)如圖3,若,直接寫出的長是______.

查看答案和解析>>

同步練習冊答案