【題目】如圖,點是等邊內一點,且,點是邊的中點,連接,.
(1)如圖1,若點,,三點共線,則與的數量關系是______;
(2)如圖2,若點,,三點不共線,問(1)中的結論還成立嗎?若成立,請給出證明,若不成立,請說明理由;
(3)如圖3,若,,直接寫出的長是______.
【答案】(1);(2)上述結論仍然成立,證明見解析;(3)
【解析】
(1)由等邊三角形的性質和已知條件得出∠BAC=∠ABC=∠ACB=60°,AM⊥BC,∠BAP=∠CAP=∠BAC=30°,得出PB=PC,由等腰三角形的性質得出∠PBC=∠PCB=30°,得出PC=2PM,證出∠ACP=60°-30°=30°=∠CAP,得出AP=PC,即可得出AP=2PM;(2)延長BP至D,使PD=PC,連接AD、CD,證明△ACD≌△BCP(SAS),得出AD=BP,∠ADC=∠BPC=120°,證明△CMN≌△BMP(SAS),得出CN=BP=AD,∠NCM=∠PBM,證明△ADP≌△NCP(SAS),即可得出AP=PN=2CM;(3)作CE⊥BD于E,設BP=4x,則PD=PC=3x,由等邊三角形的性質得出PE=PD=x,CE=PE=x,得出BE=BP+PE=x,在Rt△BCE中,由勾股定理得出方程,求出x=2,得出AD=BP=8,PD=PC=6,作PF⊥AD于F,則∠DPF=30°,由直角三角形的性質得出DF=PD=3,PF=DF=3,得出AF=AD-DF=8-3=5,由勾股定理即可得出答案.
(1)AP=2PM,理由如下:
∵△ABC是等邊三角形,點M是邊BC的中點,
∴∠BAC=∠ABC=∠ACB=60°,AM⊥BC,∠BAP=∠CAP=∠BAC=30°,
∴PB=PC,
∵∠BPC=120°,
∴∠PBC=∠PCB=30°,
∴PC=2PM,∠ACP=60°-30°=30°=∠CAP,
∴AP=PC,
∴AP=2PM;
故答案為:AP=2PM;
(2)AP=2PM成立,理由如下:
如圖,延長BP至D,使PD=PC,連接AD、CD,
則∠CPD=180°-∠BPC=60°,
∴△PCD是等邊三角形,
∴CD=PD=PC,∠PDC=∠PCD=60°,
∵△ABC是等邊三角形,
∴BC=AC,∠ACB=60°=∠PCD,
∴∠BCP=∠ACD,
又∵AC=CB,
∴△ACD≌△BCP(SAS),
∴AD=BP,∠ADC=∠BPC=120°,
∴∠ADP=120°-60°=60°,
延長PM至N,使MN=MP,連接CN,
∵點M是邊BC的中點,
∴CM=BM,
又∵∠CMN=∠PMB,
∴△CMN≌△BMP(SAS),
∴CN=BP=AD,∠NCM=∠PBM,
∴CN∥BP,
∴∠NCP+∠BPC=180°,
∴∠NCP=60°=∠ADP,
在△ADP和△NCP中,
,
∴△ADP≌△NCP(SAS),
∴AP=PN=2CM;
(3)如圖,延長BP至D,使PD=PC,連接AD、CD,延長PM至N,使MN=MP,連接CN,作CE⊥BD于E,
同(2)得:AD=BP,AP=2CM;
設BP=4x,則PD=PC=3x,
∵CE⊥BD,△CPD是等邊三角形,
∴PE=PD=x,CE=PE=x,
∴BE=BP+PE=x,
∵△ABC是等邊三角形,
∴BC=AB= ,
在Rt△BCE中,由勾股定理得:
解得:x=2,
∴AD=BP=8,PD=PC=6,
作PF⊥AD于F,則∠DPF=90°-60°=30°,
∴DF= PD=3,PF= DF=3 ,
∴AF=AD-DF=8-3=5,
∴;
故答案為:.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,E是AC上一點,且AE=AB,∠BAC=2∠EBC ,以AB為直徑的⊙O交AC于點D,交EB于點F.
(1)求證:BC與⊙O相切;
(2)若AB=8,BE=4,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線與y軸交于C點,與x軸交于A,B兩點(點A在點B左側),且點A的橫坐標為-1.
(1)求a的值;
(2)設拋物線的頂點P關于原點的對稱點為,求點的坐標;
(3)將拋物線在A,B兩點之間的部分(包括A, B兩點),先向下平移3個單位,再向左平移m()個單位,平移后的圖象記為圖象G,若圖象G與直線無交點,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次籃球比賽中,如圖隊員甲正在投籃.已知球出手時離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時達到最大高度4 m,設籃球運行軌跡為拋物線,籃圈距地面3 m.
(1)建立如圖所示的平面直角坐標系,問此球能否準確投中?
(2)此時,對方隊員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點,點在直線上運動,把點繞點逆時針旋轉,點的對應點為點,我們發(fā)現點隨點變化而變化.若點在運動變化過程中始終在拋物線的上方,設點的橫坐標為,則的取值范圍是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點D落在點D′處,則重疊部分△AFC的面積為( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年,號稱“千湖之省”的湖北正遭受大旱,為提高學生環(huán)境意識,節(jié)約用水,某校數學教師編制了一道應用題:為了保護水資源,某市制定一套節(jié)水的管理措施,其中對居民生活用水收費作如下規(guī)定:
月用水量(噸) | 單價(元/噸) |
不大于10噸部分 | 1.5 |
大于10噸不大于m噸部分(20≤m≤50) | 2 |
大于m噸部分 | 3 |
(1)若某用戶六月份用水量為18噸,求其應繳納的水費;
(2)記該用戶六月份用水量為噸,繳納水費為元,試列出與的函數式;
(3)若該用戶六月份用水量為40噸,繳納水費元的取值范圍為,試求的取值范圍.
各位同學,請你也認真做一做,相信聰明的你一定會順利完成.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程, 根據等式的基本性質,把方程轉化為的形式;求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為二元一次方程組來解.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由于“去分母”可能產生不適合原方程的根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數學思想-轉化,即:把未知轉化為已知.用“轉化”的數學思想,我們還可以解一些新的方程.例如,一元三次方程可以通過因式分解把它轉化為,解方程和,可得方程的解
問題:方程的解是 , ,
拓展:用“轉化”思想求方程的解;
變式:用“轉化”思想解方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com