【題目】我市在創(chuàng)建全國(guó)文明城市過(guò)程中,決定購(gòu)買A,B兩種樹苗對(duì)某路段道路進(jìn)行綠化改造,已知購(gòu)買A種樹苗8棵,B種樹苗3棵,需要950元;若購(gòu)買A種樹苗5棵,B種樹苗6棵,則需要800元.
(1)求購(gòu)買A,B兩種樹苗每棵各需多少元?
(2)考慮到綠化效果和資金周轉(zhuǎn),購(gòu)進(jìn)A種樹苗不能少于48棵,且用于購(gòu)買這兩種樹的資金不能超過(guò)7500元,若購(gòu)進(jìn)這兩種樹苗共100棵,則有哪幾種購(gòu)買方案?
(3)某包工隊(duì)承包種植任務(wù),若種好一棵A種樹苗可獲工錢30元,種好一棵B種樹苗可獲工錢20元,在第(2)問(wèn)的各種購(gòu)買方案中,種好這100棵樹苗,哪一種購(gòu)買方案所付的種植工錢最少?最少工錢是多少元?
【答案】(1)購(gòu)買A種樹苗每棵需100元,購(gòu)買B種樹苗每棵需50元;(2)購(gòu)買的方案有:購(gòu)進(jìn)A種樹苗48棵,B種樹苗52棵; 購(gòu)進(jìn)A種樹苗49棵,B種樹苗51棵;購(gòu)進(jìn)A種樹苗50棵,B種樹苗50棵;(3)購(gòu)進(jìn)A種樹苗48棵,B種樹苗52棵所付工錢最少,最少工錢為2480元.
【解析】
(1)設(shè)種樹苗每棵元,種樹苗每棵元,根據(jù)“購(gòu)買種樹苗8棵,種樹苗3棵,需要950元;若購(gòu)買種樹苗5棵,種樹苗6棵,則需要800元”列二元一次方程組求解可得;
(2)設(shè)購(gòu)進(jìn)種樹苗棵,則購(gòu)進(jìn)種樹苗棵,根據(jù)“種樹苗不能少于48棵,且用于購(gòu)買這兩種樹苗的資金不能超過(guò)7500元”列不等式組求解可得;
(3)根據(jù)(2)中所得方案,分別計(jì)算得出費(fèi)用即可.
解:(1)(1)設(shè)種樹苗每棵元,種樹苗每棵元,
根據(jù)題意,得:,
解得:,
答:種樹苗每棵100元,種樹苗每棵50元;
(2)設(shè)購(gòu)進(jìn)A種樹苗m棵,則購(gòu)進(jìn)B種樹苗(100﹣m)棵,
根據(jù)題意,得:,
解得:48≤m≤50,
所以購(gòu)買的方案有:
1、購(gòu)進(jìn)A種樹苗48棵,B種樹苗52棵;
2、購(gòu)進(jìn)A種樹苗49棵,B種樹苗51棵;
3、購(gòu)進(jìn)A種樹苗50棵,B種樹苗50棵;
(3)方案1的費(fèi)用為48×30+52×20=2480元,
方案2的費(fèi)用為49×30+51×20=2490元,
方案3的費(fèi)用為50×30+50×20=2500元,
所以購(gòu)進(jìn)A種樹苗48棵,B種樹苗52棵所付工錢最少,最少工錢為2480元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市為了答謝顧客,凡在本超市購(gòu)物的顧客,均可憑購(gòu)物小票參與抽獎(jiǎng)活動(dòng),獎(jiǎng)品是三種瓶裝飲料,它們分別是:綠茶(500ml)、紅茶(500ml)和可樂(600ml),抽獎(jiǎng)規(guī)則如下:①如圖,是一個(gè)材質(zhì)均勻可自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,轉(zhuǎn)盤被等分成五個(gè)扇形區(qū)域,每個(gè)區(qū)域上分別寫有“可”、“綠”、“樂”、“茶”、“紅”字樣;②參與一次抽獎(jiǎng)活動(dòng)的顧客可進(jìn)行兩次“有效隨機(jī)轉(zhuǎn)動(dòng)”(當(dāng)轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,可獲得指針?biāo)竻^(qū)域的字樣,我們稱這次轉(zhuǎn)動(dòng)為一次“有效隨機(jī)轉(zhuǎn)動(dòng)”);③假設(shè)顧客轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針指向兩區(qū)域的邊界,顧客可以再轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到轉(zhuǎn)動(dòng)為一次“有效隨機(jī)轉(zhuǎn)動(dòng)”;④當(dāng)顧客完成一次抽獎(jiǎng)活動(dòng)后,記下兩次指針?biāo)竻^(qū)域的兩個(gè)字,只要這兩個(gè)字和獎(jiǎng)品名稱的兩個(gè)字相同(與字的順序無(wú)關(guān)),便可獲得相應(yīng)獎(jiǎng)品一瓶;不相同時(shí),不能獲得任何獎(jiǎng)品.
根據(jù)以上規(guī)則,回答下列問(wèn)題:
(1)求一次“有效隨機(jī)轉(zhuǎn)動(dòng)”可獲得“樂”字的概率;
(2)有一名顧客憑本超市的購(gòu)物小票,參與了一次抽獎(jiǎng)活動(dòng),請(qǐng)你用列表或樹狀圖等方法,求該顧客經(jīng)過(guò)兩次“有效隨機(jī)轉(zhuǎn)動(dòng)”后,獲得一瓶可樂的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,AB=4cm,BC=6cm,現(xiàn)有一動(dòng)點(diǎn)P從A出發(fā)以2cm/秒的速度,沿矩形的邊A—B—C—D回到點(diǎn)A,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,
(1)當(dāng)t=3秒時(shí),求BP的長(zhǎng);
(2)當(dāng)t為何值時(shí),連接BP,AP,△ABP的面積為長(zhǎng)方形的面積三分之一?
(3)Q為AD邊上的點(diǎn),且DQ=5,當(dāng)t為何值時(shí),以長(zhǎng)方形的兩個(gè)頂點(diǎn)及點(diǎn)P為頂點(diǎn)的三角形與△DCQ全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4…均為等邊三角形.若OA1=1,則△AnBnAn+1的邊長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在ABCD中,E為AD的中點(diǎn),CE的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)F,則下列選項(xiàng)中的結(jié)論錯(cuò)誤的是( 。
A. FA:FB=1:2 B. AE:BC=1:2
C. BE:CF=1:2 D. S△ABE:S△FBC=1:4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),在△ACM,△CBN中,AC=CM,BC=CN,∠ACM=∠BCN=60°,連接AN交CM于點(diǎn)E,連接BM交CN于點(diǎn)F.
求證:(1)AN=BM.(2)△CEF是等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享經(jīng)濟(jì)與我們的生活息息相關(guān),其中,共享單車的使用給我們的生活帶來(lái)了很多便利.但在使用過(guò)程中出現(xiàn)一些不文明現(xiàn)象.某市記者為了解“使用共享單車時(shí)的不文明行為”.隨機(jī)抽查了該市部分市民,并對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖表(每個(gè)市民僅持有一種觀點(diǎn)).
調(diào)查結(jié)果分組統(tǒng)計(jì)表
組別 | 觀點(diǎn) | 頻數(shù)(人數(shù)) |
損壞零件 | 50 | |
破譯密碼 | 20 | |
亂停亂放 | ||
私鎖共享單車,歸為己用 | ||
其他 | 30 |
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)填空: ; ; ;
(2)求扇形圖中組所在扇形的圓心角度數(shù);
(3)若該市約有100萬(wàn)人,請(qǐng)你估計(jì)其中持有組觀點(diǎn)的市民人數(shù).
(4)針對(duì)以上現(xiàn)象,作為初中生的你有什么合理化的建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖②,利用網(wǎng)格線畫,使它與關(guān)于直線對(duì)稱.若每個(gè)小正方形邊長(zhǎng)為1,則的面積為__.
(2)如圖①,用直尺和圓規(guī)在△ABC的一邊上確定一點(diǎn),使PC=PB.若△ABP的周長(zhǎng)為16,BC=8,則△ABC的周長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y1=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)A(﹣1,3),與x軸的一個(gè)交點(diǎn)B(﹣4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:①2a﹣b=0;②abc<0;③拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)是(3,0);④方程ax2+bx+c﹣3=0有兩個(gè)相等的實(shí)數(shù)根;⑤當(dāng)﹣4<x<﹣1時(shí),則y2<y1.
其中正確的是( 。
A. ①②③ B. ①③⑤ C. ①④⑤ D. ②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com