【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點(diǎn)DAB上,AD=AC,AF⊥CDCD于點(diǎn)E,交CB于點(diǎn)F,則CF的長是________________.

【答案】1.5

【解析】

連接DF,由勾股定理求出AB=5,由等腰三角形的性質(zhì)得出∠CAF =∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.

連接DF,如圖所示:

Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,

∵AD=AC=3,AF⊥CD,

∴∠CAF =∠DAF,BD=AB-AD=2,

在△ADF和△ACF中,

∴△ADF≌△ACF(SAS),

∴∠ADF=∠ACF=90°,CF=DF,

∴∠BDF=90°,

設(shè)CF=DF=x,則BF=4-x,

Rt△BDF中,由勾股定理得:DF2+BD2=BF2,

x2+22=(4-x)2,

解得:x=1.5;

∴CF=1.5;

故答案為:1.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個(gè)小正方形的邊長為1個(gè)單位,每個(gè)小方格的頂點(diǎn)叫格點(diǎn).

(1)畫出ABC向右平移4個(gè)單位后得到的A1B1C1

(2)圖中ACA1C1的關(guān)系是: _____________.

(3)畫出ABCAB邊上的高CD;垂足是D

(4)圖中ABC的面積是_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OAOB,引射線OC(點(diǎn)C在∠AOB外),OD平分∠BOC,OE平分∠AOD

1)若∠BOC=40°,請(qǐng)依題意補(bǔ)全圖,并求∠BOE的度數(shù);

2)若∠BOC=αα180°),請(qǐng)直接寫出∠BOE的度數(shù)(用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(1,2)在反比例函數(shù)y= (x>0)上,B為反比例函數(shù)圖象上一點(diǎn),不與A重合,當(dāng)以O(shè)B為直徑的圓經(jīng)過A點(diǎn),點(diǎn)B的坐標(biāo)為( )

A.(2,1)
B.(3,
C.(4,0.5)
D.(5,0.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖所示AB所在的直線建一圖書室,本社區(qū)有兩所學(xué)校所在的位置在點(diǎn)C和點(diǎn)D處,CAABA,DBABB,已知AB=25km,CA=15km,DB=10km,試問:圖書室E應(yīng)該建在距點(diǎn)A多少km處,才能使它到兩所學(xué)校的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子中裝有除顏色外其余均相同的5個(gè)小球,其中紅球3個(gè)(記為A1 , A2 , A3),黑球2個(gè)(記為B1 , B2).
(1)若先從袋中取出m(m>0)個(gè)紅球,再從袋子中隨機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,填空:①若A為必然事件,則m的值為
②若A為隨機(jī)事件,則m的取值為
(2)若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),用樹狀圖或列表法求這個(gè)事件的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABD和△ACE分別是等邊三角形,ABAC,下列結(jié)論中正確有( 。﹤(gè).(1DCBE,(2)∠BOD60°,(3)∠BDO=∠CEO,(4AO平分∠DOE,(5AO平分∠BAC

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AC為⊙O的直徑,PA為⊙O的切線,切點(diǎn)為A,B為⊙O上一點(diǎn),且BC∥PO.

(1)求證:PB為⊙O的切線;
(2)若⊙O的半徑為1,PA=3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,BD是矩形ABCD的對(duì)角線,∠ABD=30°,AD=1.將△BCD沿射線BD方向平移到△B'C'D'的位置,使B'為BD中點(diǎn),連接AB',C'D,AD',BC',如圖②.

(1)求證:四邊形AB'C'D是菱形;
(2)四邊形ABC'D′的周長為
(3)將四邊形ABC'D'沿它的兩條對(duì)角線剪開,用得到的四個(gè)三角形拼成與其面積相等的矩形,直接寫出所有可能拼成的矩形周長.

查看答案和解析>>

同步練習(xí)冊(cè)答案