【題目】如圖,已知在正方形ABCD中,AE∥BD,BE=BD,BE交AD于F.求證:DE=DF.
【答案】證明:連接AC,交BD于點(diǎn)O,作EG⊥BD于點(diǎn)G.
∵四邊形ABCD是正方形,
∴AC⊥BD,
∵AE∥BD,
∴四邊形AOGE是矩形,
∴EG=AO= AC= BD= BE,
∴∠EBD=30°,
∵∠EBD=30°,BE=BD,
∴∠BED=75°,
∵∠EFD=∠FDB+∠EBD=45+30=75°,
∴∠DEF=∠DFE,
∴DF=DE.
【解析】連接AC,交BD于點(diǎn)O,作EG⊥BD垂足為G,先證明四邊形AOGE是矩形,從而可得到EG=BD=BE,從而可求得∠EBD=30°,接下來(lái)可求得∠BED=75°,然后再依據(jù)∠EFD=∠FDB+∠EBD求得∠EFD的度數(shù),故∠DEF=∠DFE,最后,依據(jù)等邊對(duì)等角的性質(zhì)進(jìn)行證明即可.
【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和含30度角的直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N.下面是推理過(guò)程,請(qǐng)你填空:
解:∵∠BAE+∠AED=180° (已知) ,
∴AB//DE( ),
∴∠BAE= ( )
又 ∵∠1=∠2(已知)
∴∠BAE-∠1= - (等式性質(zhì)),
即∠MAE=∠NEA,
∴ ∥ ( ),
∴∠M=∠N(兩直線平行,內(nèi)錯(cuò)角相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在線段AB上,點(diǎn)M、N分別是AC、BC的中點(diǎn).
(1)若AC=9cm,CB=6cm,求線段MN的長(zhǎng);
(2)若C為線段AB上任一點(diǎn),滿足AC+CB=acm,其它條件不變,你能猜想MN的長(zhǎng)度嗎?并說(shuō)明理由.
(3)若C在線段AB的延長(zhǎng)線上,且滿足AC-BC=bcm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?請(qǐng)畫出圖形,并直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,四邊形AOBC是矩形,以O(shè)為坐標(biāo)原點(diǎn),OB、OA分別在x軸、y軸上,點(diǎn)A的坐標(biāo)為(0,3),∠OAB=60°,以AB為軸對(duì)折后,C點(diǎn)落在D點(diǎn)處,則D點(diǎn)的坐標(biāo)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,OC平分,C為角平分線上一點(diǎn),過(guò)點(diǎn)C作,垂足為C,交OB于點(diǎn)D,交OB于點(diǎn)E.
判斷的形狀,并說(shuō)明理由;
若,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l:y=x,過(guò)點(diǎn)A(0,1)作y軸的垂線交直線l于點(diǎn)B,過(guò)點(diǎn)B作直線l的垂線交y軸于點(diǎn)A1;過(guò)點(diǎn)A1作y軸的垂線交直線l于點(diǎn)B1,過(guò)點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2;…按此作法繼續(xù)下去,點(diǎn)B2013的坐標(biāo)為( )
A. (42012×,42012) B. (24026×,24026) C. (24026×,24024) D. (44024×,44024)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)圖象經(jīng)過(guò)(-4,-9)和(3,5)兩點(diǎn).
①求一次函數(shù)解析式.
②求圖象和坐標(biāo)軸交點(diǎn)坐標(biāo).并畫出圖象.
③求圖象和坐標(biāo)軸圍成三角形面積.
④若點(diǎn)(2,a)在函數(shù)圖象上,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計(jì)劃分兩次購(gòu)進(jìn)A、B兩種花草,第一次分別購(gòu)進(jìn)A、B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購(gòu)進(jìn)A、B兩種花草12棵和5棵.兩次共花費(fèi)940元(兩次購(gòu)進(jìn)的A、B兩種花草價(jià)格均分別相同).
(1)A、B兩種花草每棵的價(jià)格分別是多少元?
(2)若購(gòu)買A、B兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com