【題目】如圖,在中,,以為直徑作半圓,交于點(diǎn),連接,過(guò)點(diǎn)作,垂足為點(diǎn),交的延長(zhǎng)線于點(diǎn).
(1)求證:是的切線;
(2)如果的徑為5,,求的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)連接OD,AB為⊙O的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以OD∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結(jié)論.
(2)由∠DAC=∠DAB,根據(jù)等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可計(jì)算出AD=8,在Rt△ADE中可計(jì)算出AE的長(zhǎng).
解:(1)證明:連結(jié)OD,如圖,
∵AB為⊙0的直徑,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD平分BC,即DB=DC,
∵OA=OB,
∴OD為△ABC的中位線,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴EF是⊙O的切線;
(2)∵△ABC是等腰三角形,
∴∠CAD=∠BAD,
∵∠AED=∠ADB=90°,
∴∠CAD+∠ADE=∠BAD+∠ABD=90°,
∴∠ADE=∠ABD,
在Rt△ABD中,sin∠ABD=sin∠ADE=,
AB=2AO=10,
∴AD=8,
在Rt△ADE中,sin∠ADE=,
∴AE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與反比例函數(shù)第一象限內(nèi)的圖象交于點(diǎn),連接,若.
(1)求直線的表達(dá)式和反比例函數(shù)的表達(dá)式;
(2)若直線與軸的交點(diǎn)為,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,﹣4).
(1)求該二次函數(shù)的解析;
(2)若點(diǎn)P、Q同時(shí)從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB、AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
①當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),在x軸上是否存在點(diǎn)E,使得以A、E、Q為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)求出E點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
②當(dāng)P、Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ翻折,點(diǎn)A恰好落在拋物線上D點(diǎn)處,請(qǐng)直接寫出t的值及D點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知為等邊三角形,,點(diǎn)為邊上一點(diǎn),過(guò)點(diǎn)作.交于點(diǎn);過(guò)點(diǎn)作,交的延長(zhǎng)線于點(diǎn).設(shè),的面積為,則能大致反映與函數(shù)關(guān)系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+4與拋物線y=﹣x2+bx+c交于A,B兩點(diǎn),點(diǎn)A在y軸上,點(diǎn)B在x軸上.
(1)求拋物線的解析式;
(2)在x軸下方的拋物線上存在一點(diǎn)P,使得∠ABP=90°,求出點(diǎn)P坐標(biāo);
(3)點(diǎn)E是拋物線對(duì)稱軸上一點(diǎn),點(diǎn)F是拋物線上一點(diǎn),是否存在點(diǎn)E和點(diǎn)F使得以點(diǎn)E,F,B,O為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+2k(k>0)與x軸交于點(diǎn)P,與雙曲線(x>0)交于點(diǎn)Q,若直線y=4kx-2與直線PQ交于點(diǎn)R(點(diǎn)R在點(diǎn)Q右側(cè)),當(dāng)RQ≤PQ時(shí),k的取值范圍是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)系中,點(diǎn)A(4,0),點(diǎn)B(0,3),點(diǎn)P為BC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),經(jīng)過(guò)點(diǎn)O、P折疊該紙片,得點(diǎn)B′和折痕OP.設(shè)BP=t.
(1)如圖1,當(dāng)∠BOP=30°時(shí),求點(diǎn)P的坐標(biāo);
(2)如圖2,經(jīng)過(guò)點(diǎn)P再次折疊紙片,使點(diǎn)C落在直線PB′上,得點(diǎn)C′和折痕PQ,設(shè)AQ=m,試用含有t的式子表示m;
(3)在(2)的條件下,連接OQ,當(dāng)OQ取得最小值時(shí),求點(diǎn)Q的坐標(biāo);
(4)在(2)的條件下,點(diǎn)C′能否落在邊OA上?如果能,直接寫出點(diǎn)P的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年疫情期間,為了更好地落實(shí)“停課不停學(xué)”行動(dòng),我市某中學(xué)為了更好督促學(xué)生學(xué)習(xí),組織教師對(duì)某班學(xué)生進(jìn)行家訪,根據(jù)學(xué)生參加網(wǎng)絡(luò)學(xué)習(xí)效果劃分為(差),(中),(優(yōu)),(良)四個(gè)等級(jí),并繪制了下面不完整的統(tǒng)計(jì)圖表,根據(jù)圖表中提供的信息解答下列問(wèn)題;
(1)求,的值;
(2)求等級(jí)對(duì)應(yīng)扇形圓心角的度數(shù);
(3)學(xué)校要從等級(jí)的學(xué)生中隨機(jī)選取2人參加李老師個(gè)性化輔導(dǎo),用列表或畫樹狀圖求等級(jí)中的學(xué)生小慧被選中參加輔導(dǎo)的概率.
效果等級(jí) | 頻數(shù) | 頻率 |
5 | ||
0.3 | ||
20 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切于點(diǎn)D,過(guò)點(diǎn)B作,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E.
(Ⅰ)求證:AB=BE;
(Ⅱ)連結(jié)OC,如果PD=2,∠ABC=60°,求OC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com