【題目】如圖1,一超市從一樓到二樓有一自動扶梯,圖2是側面示意圖.已知自動扶梯AB的坡度為1∶2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為37°,則二樓的層高BC約為(精確到0.1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)( 。
圖1 圖2
A. 4米 B. 3.6米 C. 2.2米 D. 4.6米
科目:初中數(shù)學 來源: 題型:
【題目】連接多邊形任意兩個不相鄰頂點的線段稱為多邊形的對角線.
(1)四、五、六、n邊形對角線條數(shù)分別為 、 、 、 .
(2)多邊形可以有12條對角線嗎?如果可以,求多邊形的邊數(shù);如果不可以,請說明理由.
(3)若一個n邊形的內角和為1800°,求它對角線的條數(shù).
(4)已知k-1邊形的對角線條數(shù)是,求k+1邊形的對角線條數(shù)(k>4).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著北京申辦冬奧會的成功,愈來愈多的同學開始關注我國的冰雪體育項目. 小健從新聞中了解到:在2018年平昌冬奧會的短道速滑男子500米決賽中,中國選手武大靖以39秒584的成績打破世界紀錄,收獲中國男子短道速滑隊在冬奧會上的首枚金牌. 同年11月12日,武大靖又以39秒505的成績再破世界紀錄. 于是小健對同學們說:“2022年北京冬奧會上武大靖再獲金牌的可能性大小是.”你認為小健的說法_________(填“合理”或“不合理”),理由是__________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O內切于Rt△ABC,點P、點Q分別在直角邊BC、斜邊AB上,PQ⊥AB,且PQ與⊙O相切,若AC=2PQ,則tan∠B的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于x的一元二次方程x2+(2k﹣1)x+k2=0的兩根a、b滿足a2﹣b2=0,雙曲線 (x>0)經過Rt△OAB斜邊OB的中點D,與直角邊AB交于C(如圖),則S△OBC為( )
A. 3 B. C. 6 D. 3或
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】材料一:把一個自然數(shù)的個位數(shù)字截去,再用余下的數(shù)減去個位數(shù)的2倍,如果差是7的倍數(shù),則原數(shù)能被7整除.如果差太大不易看出是否7的倍數(shù),可重復上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止.例如,判斷392是否7的倍數(shù)的過程如下:,,所以,392是7的倍數(shù);又例如判斷8638是否7的倍數(shù)的過程如下:,,,所以,8638是7的倍數(shù).
材料二:若一個四位自然數(shù)n滿足千位與個位相同,百位與十位相同,我們稱這個數(shù)為“對稱數(shù)”.將“對稱數(shù)”n的前兩位與后兩位交換位置得到一個新的“對稱數(shù)”,記,例如.
(1)請用材料一的方法判斷6909與367能不能被7整除;
(2)若m、p是“對稱數(shù)”,其中,(,且a,b,c均為整數(shù)),若m能被7整除,且,求p.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:求31+32+33+34+35+36的值
解:設S=31+32+33+34+35+36①
則3S=32+33+34+35+36+37②
用②﹣①得,3S﹣S=(32+33+34+35+36+37)﹣(31+32+33+34+35+36)=37﹣3
∴2S=37﹣3,即S=,∴31+32+33+34+35+36=
以上方法我們成為“錯位相減法”,請利用上述材料,解決下列問題:
(一)棋盤擺米
這是一個很著名的故事:阿基米德與國王下棋,國王輸了,國王問阿基米德要什么獎賞?阿基米德對國王說:“我只要在棋盤上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按這個方法放滿整個棋盤就行”國王以為要不了多少糧食,就隨口答應了,結果國王輸了
(1)國際象棋共有64個格子,則在第64格中應放 粒米(用冪表示)
(2)設國王輸給阿基米德的米粒數(shù)為S,求S
(二)拓廣應用:
1.計算:(仿照材料寫出求解過程)
2.計算:= (直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展了以“責任、感恩”為主題的班隊活動,活動結束后,初三(2)班數(shù)學興趣小組提出了5個主要觀點并在本班學生中進行了調查(要求每位同學只選自己最認可的一項觀點),并制成了如下扇形統(tǒng)計圖,
(1)該班有 人,學生選擇“和諧”觀點的有 人,在扇形統(tǒng)計圖中,“和諧”觀點所在扇形區(qū)域的圓心角是 度;
(2)如果該校有360名初三學生,利用樣本估計選擇“感恩”觀點的初三學生約有 人;
(3)如果數(shù)學興趣小組在這5個主要觀點中任選兩項觀點在全校學生中進行調查,求恰好選到“和諧”和“感恩”觀點的概率(用樹狀圖或列表法分析解答).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com