【題目】若關(guān)于x的一元二次方程x2+(2k﹣1)x+k2=0的兩根a、b滿(mǎn)足a2﹣b2=0,雙曲線 (x>0)經(jīng)過(guò)RtOAB斜邊OB的中點(diǎn)D,與直角邊AB交于C(如圖),則SOBC為(  )

A. 3 B. C. 6 D. 3

【答案】B

【解析】

首先由一元二次方程根的判別式得出k的取值范圍,然后由a2b2=0得出a+b=0a-b=0,再運(yùn)用一元二次方程根與系數(shù)的關(guān)系求出k的值,k的幾何意義,可知SOBA= .如果過(guò)DDEOAE,SOCA= .易證ODE∽△OBA,根據(jù)相似三角形的面積比等于相似比的平方,得出SOBA,最后由SOBC=SOBA-SOCA,得出結(jié)果.

x2+(2k-1)x+k2=0有兩根,

∴△=(2k-1)2-4k2≥0,

即k≤

a2b2=0得:(a-b)(a+b)=0.

當(dāng)a+b=0時(shí),-(2k-1)=0,解得k=,不合題意,舍去;

當(dāng)a-b=0時(shí),a=b,△=(2k-1)2-4k2=0,

解得:k=符合題意.

,

雙曲線的解析式為:

過(guò)DDEOAE,則SODE=SOCA=×1=

DEOA,BAOA

DEAB,∴△ODE∽△OBA

,∴SOBA=4×=2,

SOBC=SOBA-SOCA=2-=

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為1的小正方形網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上.

(1)B點(diǎn)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)坐標(biāo)為 ;

(2)將△AOB向左平移3個(gè)單位長(zhǎng)度得到△A1O1B1,請(qǐng)畫(huà)出△A1O1B1;

(3)在(2)的條件下,A1的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在矩形中,,點(diǎn)沿邊從點(diǎn)開(kāi)始向點(diǎn)的速度移動(dòng),點(diǎn)沿邊從點(diǎn)開(kāi)始向點(diǎn)的速度移動(dòng),如果點(diǎn)同時(shí)出發(fā),用表示移動(dòng)的時(shí)間().

1)當(dāng)為何值時(shí),為等腰三角形?

2)求四邊形的面積,并探索一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】活躍校園氣氛,增強(qiáng)班集體凝聚力,培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作意識(shí),重慶一中舉行了秋季趣味運(yùn)動(dòng)會(huì).賽后為了了解初二年級(jí)的學(xué)生們對(duì)新增比賽項(xiàng)目毛毛蟲(chóng)賽跑的喜歡程度(以下稱(chēng):喜歡度),對(duì)該年級(jí)的學(xué)生進(jìn)行了調(diào)查,被調(diào)查的學(xué)生對(duì)該比賽項(xiàng)目的喜歡度分別記為:5分、4分、3分、2分、1分(其中5分為超喜歡、4分為很喜歡、3分為喜歡、2分為一般、1分為不喜歡),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)圖中提供的信息,回答下列問(wèn)題:

1)被調(diào)查的學(xué)生總數(shù)是______人,并補(bǔ)全條形統(tǒng)計(jì)圖;

2)寫(xiě)出被調(diào)查學(xué)生喜歡度分?jǐn)?shù)的中位數(shù)是______分,眾數(shù)是______分;

3)求這批被調(diào)查學(xué)生喜歡度分?jǐn)?shù)的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOB=120°,在∠AOB的平分線OM上有一點(diǎn)C,將一個(gè)60°角的頂點(diǎn)與點(diǎn)C重合,它的兩條邊分別與直線OA、OB相交于點(diǎn)D、E

(1)當(dāng)∠DCE繞點(diǎn)C旋轉(zhuǎn)到CDOA垂直時(shí)(如圖1),請(qǐng)猜想OE+ODOC的數(shù)量關(guān)系,并說(shuō)明理由;

(2)當(dāng)∠DCE繞點(diǎn)C旋轉(zhuǎn)到CDOA不垂直時(shí),到達(dá)圖2的位置,(1)中的結(jié)論是否成立?并說(shuō)明理由;

(3)當(dāng)∠DCE繞點(diǎn)C旋轉(zhuǎn)到CDOA的反向延長(zhǎng)線相交時(shí),上述結(jié)論是否成立?若成立,請(qǐng)給于證明;若不成立,線段OD、OEOC之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游泳館每年夏季推出兩種游泳付費(fèi)方式,方式一:先購(gòu)買(mǎi)會(huì)員證,每張會(huì)員證100元,只限本人當(dāng)年使用,憑證游泳每次再付費(fèi)5元;方式二:不購(gòu)買(mǎi)會(huì)員證,每次游泳付費(fèi)9元.

設(shè)小明計(jì)劃今年夏季游泳次數(shù)為x(x為正整數(shù)).

(I)根據(jù)題意,填寫(xiě)下表:

游泳次數(shù)

10

15

20

x

方式一的總費(fèi)用(元)

150

175

______

______

方式二的總費(fèi)用(元)

90

135

______

______

(Ⅱ)若小明計(jì)劃今年夏季游泳的總費(fèi)用為270元,選擇哪種付費(fèi)方式,他游泳的次數(shù)比較多?

(Ⅲ)當(dāng)x>20時(shí),小明選擇哪種付費(fèi)方式更合算?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=﹣2x經(jīng)過(guò)點(diǎn)P(﹣2,a),點(diǎn)P關(guān)于y軸的對(duì)稱(chēng)點(diǎn)P′在反比例函數(shù)yk≠0)的圖象上.

1)求反比例函數(shù)的解析式;

2)直接寫(xiě)出當(dāng)y4時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了參加荊州市中小學(xué)生首屆詩(shī)詞大會(huì),某校八年級(jí)的兩班學(xué)生進(jìn)行了預(yù)選,其中班上前5名學(xué)生的成績(jī)(百分制)分別為:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通過(guò)數(shù)據(jù)分析,列表如下:

班級(jí)

平均分

中位數(shù)

眾數(shù)

方差

八(1)

85

b

c

22.8

八(2)

a

85

85

19.2

(1)直接寫(xiě)出表中a,b,c的值;

(2)根據(jù)以上數(shù)據(jù)分析,你認(rèn)為哪個(gè)班前5名同學(xué)的成績(jī)較好?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是根據(jù)九年級(jí)某班50名同學(xué)一周的鍛煉情況繪制的條形統(tǒng)計(jì)圖,下面關(guān)于該班50名同學(xué)一周鍛煉時(shí)間的說(shuō)法錯(cuò)誤的是( 。

A.平均數(shù)是6

B.中位數(shù)是6.5

C.眾數(shù)是7

D.平均每周鍛煉超過(guò)6小時(shí)的人數(shù)占該班人數(shù)的一半

查看答案和解析>>

同步練習(xí)冊(cè)答案