【題目】某商業(yè)集團新建一小車停車場,經(jīng)測算,此停車場每天需固定支出的費用(設(shè)施維修費、車輛管理人員工資等)為800元.為制定合理的收費標(biāo)準(zhǔn),該集團對一段時間每天小車停放輛次與每輛次小車的收費情況進行了調(diào)查,發(fā)現(xiàn)每輛次小車的停車費不超過5元時,每天來此處停放的小車可達1440輛次;若停車費超過5元,則每超過1元,每天來此處停放的小車就減少120輛次.為便于結(jié)算,規(guī)定每輛次小車的停車費x(元)只取整數(shù),用y(元)表示此停車場的日凈收入,且要求日凈收入不低于2512元.(日凈收入=每天共收取的停車費﹣每天的固定支出)

1)當(dāng)x5時,寫出yx之間的關(guān)系式,并說明每輛小車的停車費最少不低于多少元;

2)當(dāng)x5時,寫出yx之間的函數(shù)關(guān)系式(不必寫出x的取值范圍);

3)該集團要求此停車場既要吸引客戶,使每天小車停放的輛次較多,又要有較大的日凈收入.按此要求,每輛次小車的停車費應(yīng)定為多少元?此時日凈收入是多少?

【答案】(1)y1440x800;每輛次小車的停車費最少不低于3元;(2y=﹣120x2+2040x800;(3)每輛次小車的停車費應(yīng)定為8元,此時的日凈收入為7840元.

【解析】

1)根據(jù)題意和公式:日凈收入=每天共收取的停車費﹣每天的固定支出,即可求出yx的關(guān)系式,然后根據(jù)日凈收入不低于2512元,列出不等式,即可求出x的最小整數(shù)值;

2)根據(jù)題意和公式:日凈收入=每天共收取的停車費﹣每天的固定支出,即可求出yx的關(guān)系式;

3)根據(jù)x的取值范圍,分類討論:當(dāng)x5時,根據(jù)一次函數(shù)的增減性,即可求出此時y的最大值;當(dāng)x5時,將二次函數(shù)一般式化為頂點式,即可求出此時y的最大值,從而得出結(jié)論.

解:(1)由題意得:y1440x800

1440x8002512,

x2.3

x取整數(shù),

x最小取3,即每輛次小車的停車費最少不低于3元.

答:每輛小車的停車費最少不低于3元;

2)由題意得:

y[1440120x5]x800

y=﹣120x2+2040x800

3)當(dāng)x5時,

14400,

yx的增大而增大

∴當(dāng)x=5時,最大日凈收入y1440×58006400(元)

當(dāng)x5時,

y=﹣120x2+2040x800

=﹣120x217x)﹣800

=﹣120x2+7870

∴當(dāng)x時,y有最大值.但x只能取整數(shù),

x89

顯然,x8時,小車停放輛次較多,此時最大日凈收入為y=﹣120×+78707840(元)

7840元>6400

∴每輛次小車的停車費應(yīng)定為8元,此時的日凈收入為7840元.

答:每輛次小車的停車費應(yīng)定為8元,此時的日凈收入為7840元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1x+4k30,

1)求證:無論k取什么實數(shù)值,該方程總有兩個不相等的實數(shù)根?

2)當(dāng)RtABC的斜邊a,且兩條直角邊的長bc恰好是這個方程的兩個根時,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點Cx軸上,OA5,OC13,如圖所示,在OA上取一點E,將EOC沿EC折疊,使O點落在AB邊上的D點,則E點坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B,

(1)求證:AD是⊙O的切線.

(2)若BC=8,tanB=,求⊙O 的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,記直線y=x+1為l.點A1是直線l與y軸的交點,以A1O為邊作正方形A1OC1B1,使點C1落在在x軸正半軸上,作射線C1B1交直線l于點A2,以A2C1為邊作正方形A2C1C2B2,使點C2落在在x軸正半軸上,依次作下去,得到如圖所示的圖形.則點B4的坐標(biāo)是 ,點Bn的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為住宅區(qū)內(nèi)的兩幢樓,它們的高AB=CD=30m,兩樓之間的距離AC=24m,現(xiàn)需了解甲樓對乙樓的采光的影響情況,當(dāng)太陽光與水平線的夾角為30°時,求甲樓的影子在乙樓上有多高?(精確到0.1m≈1.41,≈1.73)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設(shè)銷售單價增加元,每天售出件.

1)請寫出之間的函數(shù)表達式;

2)當(dāng)為多少時,超市每天銷售這種玩具可獲利潤2250元?

3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物線yax2+bx+c的對稱軸是x=﹣1,與x軸的一個交點為(﹣50),則不等式ax2+bx+c0的解集為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了解九年級學(xué)生數(shù)學(xué)模擬考試成績情況,隨機抽取部分學(xué)生的成績進行分析,制成頻數(shù)分布表如下(成績得分均為整數(shù)):

組別

成績分組

頻數(shù)

頻率

1

47.559.5

2

0.05

2

59.571.5

4

0.10

3

71.583.5

a

0.2

4

83.595.5

10

0.25

5

95.5107.5

b

c

6

107.5120

6

0.15

合計

d

1.00

根據(jù)表中提供的信息解答下列問題:

1)頻數(shù)分布表中的a   ,b   c   ,d   ;

2)補充完整頻數(shù)分布直方圖.

3)已知全市九年級共有3500名學(xué)生參加考試,成績96分及以上為優(yōu)秀,估計全市九年級學(xué)生數(shù)學(xué)模擬考試成績?yōu)閮?yōu)秀的學(xué)生人數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊答案