【題目】一副含角的三角板疊合在一起,邊重合,(如圖1),點(diǎn)為邊的中點(diǎn),邊相交于點(diǎn),現(xiàn)將三角板繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)(如圖2),在的變化過(guò)程中,點(diǎn)相應(yīng)移動(dòng)的路徑長(zhǎng)共為____.(結(jié)果保留根號(hào))

    

【答案】

【解析】

當(dāng)GH⊥DF時(shí),BH的值最小,即點(diǎn)H先從BH=12(- 1)cm,開(kāi)始向AB方向移動(dòng)到最小的BH的值,再往BA方向移動(dòng)到與F重合,求出BH的最大值,則點(diǎn)H運(yùn)動(dòng)的總路程為:BH的最大值-BH的最小值+[12(-1)-BH的最小值].

如圖2和圖3,在∠CGF60°的變化過(guò)程中,點(diǎn)H先向AB方向移,在往BA方向移,直到HF重合(下面證明此時(shí)∠CGF=60度),此時(shí)BH的值最大,

如圖3,當(dāng)FH重合時(shí),連接CF,因?yàn)?/span>BG=CG=GF

所以∠BFC=90度,

∵∠B=30度,

∴∠BFC=60度,

CG=GF可得∠CGF=60.

∵BC=12cm,所以BF=BC=6

如圖2,當(dāng)GH⊥DF時(shí),GH有最小值,則BH有最小值,且GF//AB,連接DG,交AB于點(diǎn)K,則DG⊥AB,

∵DG=FG,

∴∠DGH=45度,

KG=KH=GH=××6=3

BK=KG=3

BH=BK+KH=3+3

則點(diǎn)H運(yùn)動(dòng)的總路程為6-3+3+[12-1-3+3]=12-18cm

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中.點(diǎn)E,F分別在BCCD上,△AEF是等邊三角形.連接ACEF于點(diǎn)G.過(guò)點(diǎn)GGHCE于點(diǎn)H.若,則=( 。

A. 6 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為進(jìn)一步了解,,四名老師在學(xué)生中受歡迎的程度,學(xué)校隨機(jī)抽取了個(gè)學(xué)生進(jìn)行調(diào)查(被調(diào)查的學(xué)生必須選且只能選其中的一名老師),并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖:

1)求的值;

2)扇形統(tǒng)計(jì)圖中,對(duì)應(yīng)的圓心角的度數(shù)是多少?

3)求出的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形△ABC的邊長(zhǎng)為6,lAC邊上的高BF所在的直線,點(diǎn)D為直線l上的一動(dòng)點(diǎn),連接AD,并將AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°AE,連接EF,則EF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】類比探究:

1)如圖1,等邊△ABC內(nèi)有一點(diǎn)P,若AP8,BP15CP17,求∠APB的大小;(提示:將△ABP繞頂點(diǎn)A旋轉(zhuǎn)到△ACP處)

2)如圖2,在△ABC中,∠CAB90°ABAC,E、FBC上的點(diǎn),且∠EAF45°.求證:EF2BE2+FC2;

3)如圖3,在△ABC中,∠C90°,∠ABC30°,點(diǎn)O為△ABC內(nèi)一點(diǎn),連接AO、BO、CO,且∠AOC=∠COB=∠BOA120°,若AC1,求OA+OB+OC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一個(gè)三位數(shù),它的各個(gè)數(shù)位上的數(shù)字都不為零,且滿足百位上的數(shù)字與個(gè)位上的數(shù)字的平均數(shù)等于十位上的數(shù)字,則稱這個(gè)三位數(shù)為開(kāi)合數(shù).設(shè)為一個(gè)開(kāi)合數(shù),將的百位數(shù)字與個(gè)位數(shù)字交換位置后得到的新數(shù)再與相加的和記為.例如:852是“開(kāi)合數(shù)”,則

1)已知開(kāi)合數(shù),且為整數(shù)),求的值;

2)三位數(shù)是一個(gè)開(kāi)合數(shù),若百位數(shù)字小于個(gè)位數(shù)字,是一個(gè)整數(shù),且能被個(gè)位數(shù)字與百位數(shù)字的差整除,請(qǐng)求滿足條件的所有值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,點(diǎn)A表示小明家,點(diǎn)B表示學(xué)校.小明媽媽騎車帶著小明去學(xué)校,到達(dá)C處時(shí)發(fā)現(xiàn)數(shù)學(xué)書(shū)沒(méi)帶,于是媽媽立即騎車原路回家拿書(shū)后再追趕小明,同時(shí)小明步行去學(xué)校,到達(dá)學(xué)校后等待媽媽.假設(shè)拿書(shū)時(shí)間忽略不計(jì),小明和媽媽在整個(gè)運(yùn)動(dòng)過(guò)程中分別保持勻速.?huà)寢審?/span>C處出發(fā)x分鐘時(shí)離C處的距離為y1米,小明離C處的距離為y2米,如圖②,折線O-D-E-F表示y1x的函數(shù)圖像;折線O-G-F表示y2x的函數(shù)圖像.

1)小明的速度為 m/min,圖②中a的值為

2)設(shè)媽媽從C處出發(fā)x分鐘時(shí)媽媽與小明之間的距離為y米.當(dāng)12x30時(shí),求出yx的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,旗桿AB的頂端B在夕陽(yáng)的余輝下落在一個(gè)斜坡上的點(diǎn)D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測(cè)量旗桿的高度,在旗桿的底部A處測(cè)得點(diǎn)D的仰角為15°,AC10米,又測(cè)得∠BDA45°.已知斜坡CD的坡度為i1,求旗桿AB的高度(,結(jié)果精確到個(gè)位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校植物園沿路護(hù)欄的紋飾部分設(shè)計(jì)成若干個(gè)全等菱形圖案,每增加一個(gè)菱形圖案,紋飾長(zhǎng)度就增加dcm,如圖所示,已知每個(gè)菱形圖案的邊長(zhǎng)為10cm,其中一個(gè)內(nèi)角為60°.

(1)求一個(gè)菱形圖案水平方向的對(duì)角線長(zhǎng);

(2)d26,紋飾的長(zhǎng)度L能否是6010cm?若能,求出菱形個(gè)數(shù);若不能,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案