【題目】如圖, 是⊙ 的直徑, 是⊙ 的弦,過點 的切線交 的延長線于點 ,且 .

(1)求 的度數(shù);
(2)若 =3,求圖中陰影部分的面積.

【答案】
(1)解:連接OC,

∵過點C的切線交AB的延長線于點D,

∴OC⊥CD,

∴∠OCD=90°,即∠D+∠COD=90°,

∵AO=CO,

∴∠A=∠ACO,

∴∠COD=2∠A,

∵∠A=∠D,

∴∠COD=2∠D,

∴3∠D=90°,

∴∠D=30°,

∴∠ACD=180°-∠A-∠D=180°-30°-30°=120°


(2)解:由(1)可知∠COD=60°在Rt△COD中,∵CD=3,∴OC=3× ,∴陰影部分的面積=

【解析】(1)根據(jù)切線的性質(zhì)和已知∠A=∠D,得到∠COD=2∠D,根據(jù)三角形內(nèi)角和定理,求出∠ACD的度數(shù);(2)由(1)可知∠COD=60°,求出陰影部分的面積等于三角形COD的面積-扇形COB的面積.
【考點精析】利用切線的性質(zhì)定理對題目進行判斷即可得到答案,需要熟知切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形OABC的邊長為2,頂點A,C分別在x軸,y軸的正半軸上,E點是BC的中點,F(xiàn)是AB延長線上一點且FB=1.

(1)求經(jīng)過點O,A,E三點的拋物線解析式;
(2)點P在拋物線上運動,當點P運動到什么位置時△OAP的面積為2,請求出點P的坐標;
(3)在拋物線上是否存在一點Q,使△AFQ是等腰直角三角形?若存在直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC 關(guān)于直線 PQ 對稱,關(guān)于直線 MN對稱.

1)用無刻度直尺畫出直線MN

2)直線 MN PQ 相交于點 O,試探究∠AOA2 與直線 MN,PQ 所夾銳角α的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2-6ax+4a+3的圖像與y軸交于點A,點B是x軸上一點,其坐標為(1,0),連接AB,tan∠ABO=2.

(1)則點A的坐標為 , a=;
(2)過點A作AB的垂線與該二次函數(shù)的圖像交于另一點C,求點C的坐標;
(3)連接BC,過點A作直線l交線段BC于點P,設(shè)點B、點C到l的距離分別為d1、d2 , 求d1+d2的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)場去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場需要,今年該農(nóng)場擴大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長率為 .
(1)則今年南瓜的種植面積為畝;(用含 的代數(shù)式表示)
(2)如果今年南瓜畝產(chǎn)量的增長率是種植面積的增長率的 ,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,ABCD,E為直線CD下方一點,BF平分ABE

1)求證:ABE+∠CE180°

2)如圖2,EG平分BEC,過點BBHGE,求FBHC之間的數(shù)量關(guān)系.

3)如圖3,CN平分ECD,若BF的反向延長線和CN的反向延長線交于點M,且E+∠M130°,請直接寫出E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y2x+6x軸于A,交y軸于B

1)直接寫出A      ),B      );

2)如圖1,點E為直線yx+2上一點,點F為直線yx上一點,若以A,B,EF為頂點的四邊形是平行四邊形,求點E,F的坐標

3)如圖2,點Cmn)為線段AB上一動點,D(﹣7m,0)在x軸上,連接CD,點MCD的中點,求點M的縱坐標y和橫坐標x之間的函數(shù)關(guān)系式,并直接寫出在點C移動過程中點M的運動路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知A(0,a),B(b,0),C(b,c)三點,其中a,bc滿足關(guān)系式|a2|(b3)20,(c4)2≤0

1)求a,b,c的值;

2)如果在第二象限內(nèi)有一點P(m,),請用含m的式子表示四邊形ABOP的面積;

3)在(2)的條件下,是否存在點P,使四邊形ABOP的面積與三角形ABC的面積相等?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市創(chuàng)全國衛(wèi)生城市,某街道積極響應(yīng),決定在街道內(nèi)的所有小區(qū)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買4個垃圾箱比購買5個溫馨提示牌多350元,垃圾箱的單價是溫馨提示牌單價的3倍.

求溫馨提示牌和垃圾箱的單價各是多少元?

如果該街道需購買溫馨提示牌和垃圾箱共3000個.

求購買溫馨提示牌和垃圾箱所需費用與溫馨提示牌的個數(shù)x的函數(shù)關(guān)系式;

若該街道計劃費用不超過35萬元,而且垃圾箱的個數(shù)不少于溫馨提示牌的個數(shù)的倍,求有幾種可供選擇的方案?并找出資金最少的方案,求出最少需多少元?

查看答案和解析>>

同步練習冊答案