【題目】如圖,一個均勻的轉(zhuǎn)盤被平均分成9等份,分別標有1,2345,6,78,99個數(shù)字.轉(zhuǎn)動轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字.

小亮和小芳兩人玩轉(zhuǎn)盤游戲,對游戲規(guī)則,小芳提議:若轉(zhuǎn)岀的數(shù)字是3的倍數(shù),小芳獲勝,若轉(zhuǎn)出的數(shù)字是4的倍數(shù),小亮獲勝.

1)你認為小芳的提議合理嗎?為什么?

2)利用這個轉(zhuǎn)盤,請你為他倆設計一種對兩人都公平的游戲規(guī)則.

【答案】(1)不合理,因為小芳獲勝概率大;(2)轉(zhuǎn)出數(shù)字大于5小亮勝;轉(zhuǎn)出數(shù)字小于5小芳勝.

【解析】

1)分別求出小芳和小亮的勝率,再進行比較即可;

2)設計出兩者勝算相等的方案即可.

1)不公平,因為小芳獲勝的概率為,

而小亮獲勝的概率為

所以這樣的游戲規(guī)則不公平,

2)我設計的方法是:轉(zhuǎn)出數(shù)字大于5小亮勝;轉(zhuǎn)出數(shù)字小于5小芳勝.

這樣的游戲方法就公平了

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在下列四項調(diào)查中,方式正確的是  

A. 了解本市中學生每天學習所用的時間,采用全面調(diào)查的方式

B. 為保證運載火箭的成功發(fā)射,對其所有的零部件采用抽樣調(diào)查的方式

C. 了解某市每天的流動人口數(shù),采用全面調(diào)查的方式

D. 了解全市中學生的視力情況,采用抽樣調(diào)查的方式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為解決中小學大班額問題,某縣今年將改擴建部分中小學,根據(jù)預算,改擴建3所中學和2所小學共需資金6200萬元,改擴建1所中學和3所小學共需資金4400萬元

1)改擴建1所中學和1所小學所需資金分別是多少萬元?

2)該縣計劃改擴建中小學共10所,改擴建資金由國家財政和地方財政共同承擔.若國家財政撥付資金不超過8400萬元;地方財政投入資金不少于4000萬元,其中地方財政投入到中小學的改擴建資金分別為每所500萬元和300萬元,請問共有哪幾種改擴建方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲口袋中放有3個紅球和5個白球,乙口袋中放有7個紅球和9個白球,所有球除顏色外都相同.充分攪勻兩個口袋,分別從兩個口袋中任意摸出一個球,設從甲中摸出紅球的概率是(),從乙中摸出紅球的概率是()

(1)()()的值,并比較它們的大。

(2)將甲、乙兩個口袋的球都倒入丙口袋,充分攪勻后,設從丙中任意摸出一球是紅球的概率為().小明認為:()()().他的想法正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知:為等邊三角形,點E為射線AC上一點,點D為射線CB上一點,

(1)如圖1,當EAC的延長線上且時,AD的中線嗎?請說明理由;

(2)如圖2,當EAC的延長線上時,等于AE嗎?請說明理由;

(3)如圖3,當D在線段CB的延長線上,E在線段AC上時,請直接寫出ABBD、AE的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2x﹣3x軸交于A、B兩點(AB的左邊),與y軸交于點C.

(1)求出點A、B、C的坐標.

(2)求SABC

(3)在拋物線上(除點C外),是否存在點N,使得SNAB=SABC , 若存在,求出點N的坐標,若不 存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DAAB,ADAB,EAACAEAC

1)試說明△ACD≌△AEB;

2)若∠ACB90°,連接CE,

①說明EC平分∠ACB

②判斷DCEB的位置關系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程組或不等式解應用題

現(xiàn)有,兩種商品,買2商品和1商品用了80元,買4商品和3商品用了180

(1),兩種商品每件各是多少元?

(2)如果小亮準備購買,兩種商品共10件,總費用不超過260元,至少買多少件商品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【閱讀理解】

我們知道,1+2+3+…+n=,那么12+22+32+…+n2結(jié)果等于多少呢?

在圖1所示三角形數(shù)陣中,第1行圓圈中的數(shù)為1,即12,第2行兩個圓圈中數(shù)的和為2+2,即22,;第nn個圓圈中數(shù)的和為,即n2,這樣,該三角形數(shù)陣中共有個圓圈,所有圓圈中數(shù)的和為12+22+32+…+n2

【規(guī)律探究】

將三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖2所示的三角形數(shù)陣,觀察這三個三角形數(shù)陣各行同一位置圓圈中的數(shù)(如第n﹣1行的第一個圓圈中的數(shù)分別為n﹣1,2,n),發(fā)現(xiàn)每個位置上三個圓圈中數(shù)的和均為   ,由此可得,這三個三角形數(shù)陣所有圓圈中數(shù)的總和為:3(12+22+32+…+n2)=   ,因此,12+22+32+…+n2=   

【解決問題】

根據(jù)以上發(fā)現(xiàn),計算: 的結(jié)果為   

查看答案和解析>>

同步練習冊答案