【題目】如圖所示,菱形ABCD中,直線l⊥邊AB,并從點(diǎn)A出發(fā)向右平移,設(shè)直線l在菱形ABCD內(nèi)部截得的線段EF的長(zhǎng)為y,平移距離xAF,yx之間的函數(shù)關(guān)系的圖象如圖2所示,則菱形ABCD的面積為( 。

A.3B.C.2D.3

【答案】C

【解析】

將圖1和圖2結(jié)合起來(lái)分析,分別得出直線l過(guò)點(diǎn)DBC時(shí)對(duì)應(yīng)的x值和y值,從而得出菱形的邊長(zhǎng)和高,從而得其面積.

解:由圖2可知,當(dāng)直線l過(guò)點(diǎn)D時(shí),xAFa,菱形ABCD的高等于線段EF的長(zhǎng),此時(shí)yEF

直線l向右平移直到點(diǎn)F過(guò)點(diǎn)B時(shí),y;

當(dāng)直線l過(guò)點(diǎn)C時(shí),xa+2,y0

∴菱形的邊長(zhǎng)為a+2a2

∴當(dāng)點(diǎn)E與點(diǎn)D重合時(shí),由勾股定理得a2+4

a1

∴菱形的高為

∴菱形的面積為2

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小華設(shè)計(jì)的作一個(gè)角等于已知角的2的尺規(guī)作圖過(guò)程.

已知:

求作:,使得

作法:如圖,

①在射線上任取一點(diǎn);

②作線段的垂直平分線,交于點(diǎn),交于點(diǎn);

③連接

所以即為所求作的角.

根據(jù)小華設(shè)計(jì)的尺規(guī)作圖過(guò)程,

(1)使用直尺和圓規(guī)補(bǔ)全圖形(保留作圖痕跡)

(2)完成下面的證明(說(shuō)明:括號(hào)里填寫(xiě)推理的依據(jù))

證明:∵是線段的垂直平分線,

______(______)

(______)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)營(yíng)一批進(jìn)價(jià)為2元的小商品,在市場(chǎng)營(yíng)銷(xiāo)中發(fā)現(xiàn)日銷(xiāo)售單價(jià)x元與日銷(xiāo)售量y件有如下關(guān)系:

x

3

5

9

11

y

18

14

6

2

1)預(yù)測(cè)此商品日銷(xiāo)售單價(jià)為11.5元時(shí)的日銷(xiāo)售量;

2)設(shè)經(jīng)營(yíng)此商品日銷(xiāo)售利潤(rùn)(不考慮其他因素)為P元,根據(jù)銷(xiāo)售規(guī)律,試求日銷(xiāo)售利潤(rùn)P元與銷(xiāo)售單價(jià)x元之間的函數(shù)關(guān)系式,問(wèn)日銷(xiāo)售利潤(rùn)P是否存在最大值或最小值?若有,試求出;若無(wú),請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DAB中點(diǎn),過(guò)點(diǎn)DDF//BCAC于點(diǎn)E,且DE=EF,連接AFCF,CD

1)求證:四邊形ADCF為平行四邊形;

2)若∠ACD=45°,∠EDC=30°,BC=4,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于任意兩點(diǎn)P1(x1,y1),P2(x2,y2),如果,則稱(chēng)P1P2互為“d-距點(diǎn)”.例如:點(diǎn)P1(3,6),點(diǎn)P2(17),由d=|3-1|+|6-7|=3,可得點(diǎn)P1P2互為“3-距點(diǎn)”.

1)在點(diǎn)D(-2,-2),E(5-1),F(04)中,原點(diǎn)O的“4-距點(diǎn)"____(填字母)

2)已知點(diǎn)A(2,1),點(diǎn)B(0b),過(guò)點(diǎn)B作平行于x軸的直線l

①當(dāng)b=3時(shí),直線l上點(diǎn)A的“2-距點(diǎn)"的坐標(biāo)為_______;

②若直線l上存在點(diǎn)A2-距點(diǎn)”,求b的取值范圍:

3)已知點(diǎn)M(1,2),N(3,2)C(m,0),⊙C的半徑為,若在線段MN上存在點(diǎn)P,在⊙C上存在點(diǎn)Q,使得點(diǎn)P與點(diǎn)Q互為“5-距點(diǎn)",直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+b與反比例函數(shù)y的圖形交于Aa4)和B4,1)兩點(diǎn)

1)求bk的值;

2)若點(diǎn)Cx,y)也在反比例函數(shù)yx0)的圖象上,求當(dāng)2x6時(shí),函數(shù)值y的取值范圍;

3)將直線y=﹣x+b向下平移m個(gè)單位,當(dāng)直線與雙曲線沒(méi)有交點(diǎn)時(shí),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,網(wǎng)格的每個(gè)小正方形邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn).已知的頂點(diǎn)都在格點(diǎn)上,線段的中點(diǎn)為

1)以點(diǎn)為旋轉(zhuǎn)中心,分別畫(huà)出把順時(shí)針旋轉(zhuǎn),后的,;

2)利用(1)變換后所形成的圖案,解答下列問(wèn)題:

①直接寫(xiě)出四邊形,四邊形的形狀;

②直接寫(xiě)出的值;

③設(shè)的三邊,,請(qǐng)證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)CE在⊙O上,∠B=2ACE,在BA的延長(zhǎng)線上有一點(diǎn)P,使得∠P=BAC,弦CEAB于點(diǎn)F,連接AE

1)求證:PE是⊙O的切線;

2)若AF=2AE=EF=,求OA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB4,MAB的中點(diǎn),動(dòng)點(diǎn)P到點(diǎn)M的距離是1,連接PB,線段PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PC,連接AC,則線段AC長(zhǎng)度的最大值是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案