【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為(4,0),C點的坐標為(0,6),點B在第一象限內(nèi),點P從原點O出發(fā),以每秒2個單位長度的速度沿著OABCO的路線移動(即沿長方形移動一周).

1)寫出B點的坐標;

2)當點P移動3秒時,求三角形OAP的面積;

3)在移動過程中,當點Px軸距離為4個單位長度時,求點P移動的時間.

【答案】1)(4,6);(24;(34秒或8

【解析】

1)根據(jù)長方形的性質(zhì),易得B得坐標;

2)根據(jù)題意,P的運動速度與移動的時間,進而結合三角形的面積公式可得答案;

3)根據(jù)題意,當點Px軸距離為5個單位長度時,有PABOC上兩種情況,分別求解可得答案.

解:(1)根據(jù)長方形的性質(zhì),可得ABy軸平行,BCx軸平行;

B的坐標為(46);

2)∵A4,0)、C06),

OA4OC6

3×264,

∴點P在線段AB上.

PA2

SOAPOA×PA×4×24

3)∵OCAB64,∴點PAB上或OC上.

當點PAB上時,PA4,

此時點P移動路程為4+48,時間為×84

當點POC上時,OP4,

此時點P移動路程為24+6)﹣416,時間為×168

∴點P移動的時間為4秒或8秒.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程mx2+(3m+1)x+3=0.

(1)求證:該方程有兩個實數(shù)根;
(2)如果拋物線y=mx2+(3m+1)x+3與x軸交于A、B兩個整數(shù)點(點A在點B左側(cè)),且m為正整數(shù),求此拋物線的表達式;
(3)在(2)的條件下,拋物線y=mx2+(3m+1)x+3與y軸交于點C,點B關于y軸的對稱點為D,設此拋物線在﹣3≤x≤﹣ 之間的部分為圖象G,如果圖象G向右平移n(n>0)個單位長度后與直線CD有公共點,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖中二次函數(shù)解析式為y=ax2+bx+c(a≠0)則下列命題中正確的有(填序號).①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,E是CD邊上一點,
(1)將△ADE繞點A按順時針方向旋轉(zhuǎn),使AD、AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 , ∠AFB=∠ .
(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點,且∠PAQ=45°,試通過旋轉(zhuǎn)的方式說明:DQ+BP=PQ.
(3)在(2)題中,連接BD分別交AP、AQ于M、N,你還能用旋轉(zhuǎn)的思想說明BM2+DN2=MN2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計劃量相比有出入.下面是一周中每天的生產(chǎn)情況記錄表(超過200輛記為正、不足200輛記為負):

星期

增減

+5

-2

-4

+13

-10

+16

-9

1)根據(jù)記錄可知前兩天共生產(chǎn) 輛自行車;

2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn) 輛自行車;

3)該廠實行計件工資制,每生產(chǎn)一輛自行車可得80元.若超額完成任務,則超額部分每輛再獎20元;若沒有完成計劃工作量,則每少生產(chǎn)一輛扣20元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四個全等的直角三角形按圖示方式圍成正方形ABCD,過各較長直角邊的中點作垂線,圍成面積為S的小正方形EFGH.已知AMRtABM較長直角邊,AM2EF,則正方形ABCD的面積為( 。

A. 14SB. 13SC. 12SD. 11S

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,四邊形ABCD的頂點都在格點上.

1)求四邊形ABCD的周長;

2)連接AC,試判斷ACD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高。求證:AD垂直平分EF。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,ABBC,O是△ABC內(nèi)部的一個動點,△OBD是等腰直角三角形,OBBD

1)求證:∠AOB=∠CDB;

2)若△COD是等腰三角形,∠AOC140°,求∠AOB的度數(shù).

查看答案和解析>>

同步練習冊答案