【題目】在邊長為5的正方形ABCD中,點(diǎn)E,F分別是BC,DC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C,D重合),且AE⊥EF.
(1)如圖1,當(dāng)BE=2時(shí),求FC的長;
(2)延長EF交正方形ABCD外角平分線CP于點(diǎn)P.
①依題意將圖2補(bǔ)全;
②小京通過觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)E運(yùn)動(dòng)的過程中,始終有AE=PE.小京把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的三種想法:
想法1:在AB上截取AG=EC,連接EG,要證AE=PE,需證△AGE≌△ECP.
想法2:作點(diǎn)A關(guān)于BC的對稱點(diǎn)H,連接BH,CH,EH.要證AE=PE,需證△EHP為等腰三角形.
想法3:將線段BE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到線段BM,連接CM,EM,要證AE=PE,需證四邊形MCPE為平行四邊形.
請你參考上面的想法,幫助小京證明AE=PE.(一種方法即可)
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)正方形的性質(zhì)求出EC,證明△ABE∽△ECF,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可;
(2)①根據(jù)題意畫圖;
②在AB上截取AG=EC,連接EG,證明△AGE≌△ECP,根據(jù)全等三角形的性質(zhì)證明.
解:(1)∵正方形ABCD的邊長為5,BE=2,
∴EC=3.
∵四邊形ABCD是正方形,
∴∠B=∠C=90°,
∴∠BAE+∠AEB=90°,
∵AE⊥EF,
∴∠FEC+∠AEB=90°,
∴∠BAE=∠CEF.
∴△AGE∽△ECF,
∴,即,
∴FC=;
(2)①依題意補(bǔ)全圖形:
②證明:在AB上截取AG=EC,連接EG.
∵AB=BC,
∴GB=EB.
∵∠B=90°,
∴∠BGE=45°,
∴∠AGE=135°.
∵∠DCB=90°,CP是正方形ABCD外角平分線,
∴∠ECP=135°.
∴∠AGE=∠ECP.
在△AGE和△ECP中,
,
∴△AGE≌△ECP.
∴AE=PE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)得到△A'B'C',此時(shí)點(diǎn)A'恰好在AB邊上,則點(diǎn)B'與點(diǎn)B之間的距離為( 。
A. 12 B. 6 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=10,BD=9,則△ADE的周長為( 。
A. 19B. 20C. 27D. 30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,點(diǎn)E是線段AC上一點(diǎn),BE∥CD,∠BEC=∠BAD.
(1)如圖1已知AB=AD;
①找出圖中與∠DAC相等的角,并給出證明;
②求證:AE=CD;
(2)如圖2,若BC∥ED,,∠BEC=45°,求tan∠ABE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于任意三點(diǎn)A,B,C,給出如下定義:
如果矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,B,C的覆蓋矩形.點(diǎn)A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點(diǎn)A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點(diǎn)A,B,C的覆蓋矩形,其中矩形AB3C3D3是點(diǎn)A,B,C的最優(yōu)覆蓋矩形.
(1)已知A(﹣2,3),B(5,0),C(t,﹣2).
①當(dāng)t=2時(shí),點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為 ;
②若點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為40,求直線AC的表達(dá)式;
(2)已知點(diǎn)D(1,1).E(m,n)是函數(shù)y=(x>0)的圖象上一點(diǎn),⊙P是點(diǎn)O,D,E的一個(gè)面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,BD與過點(diǎn)C的切線垂直于點(diǎn)D,BD與⊙O交于點(diǎn)E.
(1)求證:BC平分∠DBA;
(2)連接AE和AC,若cos∠ABD=,OA=m,請寫出求四邊形AEDC面積的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十八大報(bào)告首次提出建設(shè)生態(tài)文明,建設(shè)美麗中國.十九大報(bào)告再次明確,到2035年美麗中國目標(biāo)基本實(shí)現(xiàn).森林是人類生存發(fā)展的重要生態(tài)保障,提高森林的數(shù)量和質(zhì)量對生態(tài)文明建設(shè)非常關(guān)鍵.截止到2013年,我國已經(jīng)進(jìn)行了八次森林資源清查,其中全國和北京的森林面積和森林覆蓋率情況如下:
表1全國森林面積和森林覆蓋率
清查次數(shù) | 一 (1976年) | 二 (1981年) | 三 (1988年) | 四 (1993年) | 五 (1998年) | 六 (2003年) | 七 (2008年) | 八 (2013年) |
森林面積(萬公頃) | 12200 | 1150 | 12500 | 13400 | 15894. 09 | 17490.92 | 19545.22 | 20768.73 |
森林覆蓋率 | 12.7% | 12% | 12.98% | 13.92% | 16.55% | 18.21% | 20.36% | 21.63% |
表2北京森林面積和森林覆蓋率
清查次數(shù) | 一 (1976年) | 二 (1981年) | 三 (1988年) | 四 (1993年) | 五 (1998年) | 六 (2003年) | 七 (2008年) | 八 (2013年) |
森林面積(萬公頃) | 33.74 | 37.88 | 52.05 | 58.81 | ||||
森林覆蓋率 | 11.2% | 8.1% | 12.08% | 14.99% | 18.93% | 21.26% | 31.72% | 35.84% |
(以上數(shù)據(jù)來源于中國林業(yè)網(wǎng))
請根據(jù)以上信息解答下列問題:
(1)從第 次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;
(2)補(bǔ)全以下北京森林覆蓋率折線統(tǒng)計(jì)圖,并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
(3)第八次清查的全國森林面積20768.73(萬公頃)記為a,全國森林覆蓋率21.63%記為b,到2018年第九次森林資源清查時(shí),如果全國森林覆蓋率達(dá)到27.15%,那么全國森林面積可以達(dá)到 萬公頃(用含a和b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ADBC內(nèi)接于⊙O,AB為⊙O的直徑,對角線AB、CD相交于點(diǎn)E.
(1)求證:∠BCD+∠ABD=90°;
(2)點(diǎn)G在AC的延長線上,連接BG,交⊙O于點(diǎn)Q,CA=CB,∠ABD=∠ABG,作GH⊥CD,交DC的延長線于點(diǎn)H,求證:GQ=GH.
(3)在(2)的條件下,過點(diǎn)B作BF∥AD,交CD于點(diǎn)F,GH=3CH,若CF=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新建小區(qū)要修一條1050米長的路,甲、乙兩個(gè)工程隊(duì)想承建這項(xiàng)工程.經(jīng)
了解得到以下信息(如表):
工程隊(duì) | 每天修路的長度(米) | 單獨(dú)完成所需天數(shù)(天) | 每天所需費(fèi)用(元) |
甲隊(duì) | 30 | n | 600 |
乙隊(duì) | m | n﹣14 | 1160 |
(1)甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)n= ,乙隊(duì)每天修路的長度m= (米);
(2)甲隊(duì)先修了x米之后,甲、乙兩隊(duì)一起修路,又用了y天完成這項(xiàng)工程(其中x,y為正整數(shù)).
①當(dāng)x=90時(shí),求出乙隊(duì)修路的天數(shù);
②求y與x之間的函數(shù)關(guān)系式(不用寫出x的取值范圍);
③若總費(fèi)用不超過22800元,求甲隊(duì)至少先修了多少米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com