【題目】如圖,平行四邊形ABCD中,AB=18,BC=12,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中點,過D分別作DP⊥AF于P,DQ⊥CE于Q,則下列結(jié)論正確的個數(shù)是( )
(1)CE平分∠BCD;(2)AF=CE;(3)連接DE、DF,則;(4)DP:DQ=
A.4個B.3個C.2個D.1個
【答案】B
【解析】
由平行四邊形ABCD中,AB=18,BC=12,AE:EB=1:2,得EB= BC,結(jié)合AB∥CD,即可判斷(1);過點F作FM⊥AB交AB的延長線于點M,在RtAMF中,利用勾股定理求出AF=,在BCE中,求出CE的值,即可判斷(2);由,,即可判斷(3);由,即可判斷(4).
∵平行四邊形ABCD中,AB=18,BC=12,AE:EB=1:2,
∴EB= BC=12,
∴∠BEC=∠BCE,
∵AB∥CD,
∴∠BEC=∠DCE,
∴∠BCE=∠DCE,
∴CE平分∠BCD,
∴(1)正確;
過點F作FM⊥AB交AB的延長線于點M,
∵AD∥BC,
∴∠CBM=∠DAB=60°,∠BFM=30°,
∵F是BC的中點,
∴BF=BC=6,
∴BM=BF=3,FM=BM=3,
∴AM=18+3=21,
∴AF=,
∵EB= BC=12,∠ABC=180°-60°=120°,
∴CE=×BC=12,
∴AF≠CE,
∴(2)錯誤;
∵在平行四邊形ABCD中,,,
∴,
∴(3)正確;
∵DP⊥AF,DQ⊥CE,
∴,
∴DP:DQ=CE:AF=,
∴(4)正確.
故答案是:span>B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線L:y=﹣x+2與x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),動點M從A點以每秒1個單位的速度沿x軸向左移動.
(1)求A、B兩點的坐標;
(2)求△COM的面積S與M的移動時間t之間的函數(shù)關系式;
(3)當t為何值時△COM≌△AOB,請直接寫出此時t值和M點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在平面直角坐標系xOy中,A(4,0)、B(0,3)、C(4,3),I是△ABC的內(nèi)心,將△ABC繞原點逆時針旋轉(zhuǎn)90°后,I的對應點I′的坐標為( )
A. (-2,3) B. (-3,2) C. (3,-2) D. (2,-3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O交斜邊AC于點D,過圓心O作OE∥AC,交BC于點E,連接DE.
(1)判斷DE與⊙O的位置關系并說明理由;
(2)求證:2DE2=CDOE;
(3)若tanC=,DE=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉淇同學要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,AB=
求證:四邊形ABCD是 四邊形.
(1)在方框中填空,以補全已知和求證;
(2)按嘉淇同學的思路寫出證明過程;
(3)用文字敘述所證命題的逆命題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點B的坐標為(6,n)。線段OA=5,E為x軸上一點,且.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOC的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)自變量x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,AE=CD,AD,BE相交于點P,BQ⊥AD于點Q,PQ=3,PE=1.
(1)求證:∠ABE=∠CAD;
(2)求BP和AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知為等邊三角形,點由點出發(fā),在延長線上運動,連接,以為邊作等邊三角形,連接.
(1)證明:;
(2)若,點的運動速度為每秒,運動時間為秒,則為何值時,?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com