【題目】某中學(xué)進(jìn)行基于學(xué)生核心素養(yǎng)課程體系的開發(fā),學(xué)校計劃開設(shè):藝術(shù)、武術(shù)、書法、科技共四門選修課,并開展了以你最想?yún)⒓拥倪x修課是哪門?(必選且只選一門選修課)為主題的調(diào)查活動,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖的信息回答下列問題:

(1)本次調(diào)查共抽取了多少名學(xué)生?

(2)分別求出參加調(diào)查的學(xué)生中選擇武術(shù)和書法選修課的人數(shù),并補(bǔ)全條形統(tǒng)計圖;

(3)若該中學(xué)共有 1600 名學(xué)生,請你估計該中學(xué)選擇科技選修課的學(xué)生大約有多少名.

【答案】1)本次調(diào)查共抽取了80名學(xué)生;(2)選修武術(shù)的人數(shù)12名,選修書法的人數(shù)28名,補(bǔ)圖見解析;(3)估計該中學(xué)選擇科技選修課的學(xué)生大約有320名.

【解析】

1)根據(jù)選修藝術(shù)的條形統(tǒng)計圖和扇形統(tǒng)計圖的信息計算即可得;

2)結(jié)合題(1)的結(jié)論,先根據(jù)選修武術(shù)的扇形統(tǒng)計圖求出選修武術(shù)的人數(shù),再利用調(diào)查的總?cè)藬?shù)減去另外三個的人數(shù)即可得選修書法的人數(shù),據(jù)此補(bǔ)全條形統(tǒng)計圖即可;

3)先求出選修科技的學(xué)生占比,再乘以1600即可得.

1(名)

答:本次調(diào)查共抽取了80名學(xué)生;

2)調(diào)查學(xué)生中選修武術(shù)的人數(shù):(名)

選修書法的人數(shù):(名)

補(bǔ)全條形統(tǒng)計圖如下:

答:選修武術(shù)的人數(shù)12名,選修書法的人數(shù)28名;

3)選修科技的學(xué)生占比:

(名)

答:估計該中學(xué)選擇科技選修課的學(xué)生大約有320名.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄂爾多斯市某百貨商場銷售某一熱銷商品A,其進(jìn)貨和銷售情況如下:用16000元購進(jìn)一批該熱銷商品A,上市后很快銷售一空,根據(jù)市場需求情況,該商場又用7500元購進(jìn)第二批該商品,已知第二批所購件數(shù)是第一批所購件數(shù)的一半,且每件商品的進(jìn)價比第一批的進(jìn)價少10元.

1)求商場第二批商品A的進(jìn)價;

2)商場同時銷售另一種熱銷商品B,已知商品B的進(jìn)價與第二批商品A的進(jìn)價相同,且最初銷售價為165元,每天能賣出125件,經(jīng)市場銷售發(fā)現(xiàn),若售價每上漲1元,其每天銷售量就減少5件,問商場該如何定售價,每天才能獲得最大利潤?并求出每天的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為8,MAB的中點(diǎn),PBC邊上的動點(diǎn),連結(jié)PM,以點(diǎn)P為圓心,PM長為半徑作⊙P

1)當(dāng)BP   時,MBPDCP;

2)當(dāng)⊙P與正方形ABCD的邊相切時,求BP的長;

3)設(shè)⊙P的半徑為x,請直接寫出正方形ABCD中恰好有兩個頂點(diǎn)在圓內(nèi)的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,2)與(0,3)之間(不包括這兩點(diǎn)),對稱軸為直線x=2.下列結(jié)論:abc<0;9a+3b+c>0;③若點(diǎn)M(,y1),點(diǎn)N(,y2)是函數(shù)圖象上的兩點(diǎn),則y1<y2;<a<﹣其中正確結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與y軸交于點(diǎn)A(0,-4),與x軸交于點(diǎn)B(-2,0),C(8,0),連接AB,AC

1)求出二次函數(shù)表達(dá)式;

2)若點(diǎn)N在線段BC上運(yùn)動(不與點(diǎn)B,C重合),過點(diǎn)NNMAB,交AC于點(diǎn)M,連接AN,當(dāng)以點(diǎn)A,M,N為頂點(diǎn)的三角形與以點(diǎn)A,B,O為頂點(diǎn)的三角形相似時,求此時點(diǎn)N的坐標(biāo);

3)若點(diǎn)Nx軸上運(yùn)動,當(dāng)以點(diǎn)A,N,C為頂點(diǎn)的三角形是等腰三角形時,請直接寫出此時點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個少年在綠茵場上游戲.小紅從點(diǎn)出發(fā)沿線段運(yùn)動到點(diǎn),小蘭從點(diǎn)出發(fā),以相同的速度沿逆時針運(yùn)動一周回到點(diǎn),兩人的運(yùn)動路線如圖1所示,其中.兩人同時開始運(yùn)動,直到都停止運(yùn)動時游戲結(jié)束,其間他們與點(diǎn)的距離與時間(單位:秒)的對應(yīng)關(guān)系如圖2所示.則下列說法正確的是(

A.小紅的運(yùn)動路程比小蘭的長

B.兩人分別在1.09秒和7.49秒的時刻相遇

C.當(dāng)小紅運(yùn)動到點(diǎn)的時候,小蘭已經(jīng)經(jīng)過了點(diǎn)

D.4.84秒時,兩人的距離正好等于的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線yax2+bx+cy軸交于點(diǎn)A0,6),與x軸交于點(diǎn)B(﹣2,0),C60).

1)直接寫出拋物線的解析式及其對稱軸;

2)如圖2,連接AB,AC,設(shè)點(diǎn)Pm,n)是拋物線上位于第一象限內(nèi)的一動點(diǎn),且在對稱軸右側(cè),過點(diǎn)PPDAC于點(diǎn)E,交x軸于點(diǎn)D,過點(diǎn)PPGABAC于點(diǎn)F,交x軸于點(diǎn)G.設(shè)線段DG的長為d,求dm的函數(shù)關(guān)系式,并注明m的取值范圍;

3)在(2)的條件下,若PDG的面積為

①求點(diǎn)P的坐標(biāo);

②設(shè)M為直線AP上一動點(diǎn),連接OM交直線AC于點(diǎn)S,則點(diǎn)M在運(yùn)動過程中,在拋物線上是否存在點(diǎn)R,使得ARS為等腰直角三角形?若存在,請直接寫出點(diǎn)M及其對應(yīng)的點(diǎn)R的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)E在矩形ABCD的邊AD上,AD6tanACD,連接CE,線段CE繞點(diǎn)C旋轉(zhuǎn)90°,得到線段CF,以線段EF為直徑做O

1)請說明點(diǎn)C一定在O上的理由;

2)點(diǎn)MO上,如圖2,MCO的直徑,求證:點(diǎn)MAD的距離等于線段DE的長;

3)當(dāng)△AEM面積取得最大值時,求O半徑的長;

4)當(dāng)O與矩形ABCD的邊相切時,計算扇形OCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EBC的中點(diǎn),連接DE,PDE上一點(diǎn),∠BPC90°,延長CPAD于點(diǎn)F.⊙O經(jīng)過PD、F,交CD于點(diǎn)G

1)求證:DFDP;

2)若,,求DG的長;

3)連接BF,若BF是⊙O的切線,直接寫出的值.

查看答案和解析>>

同步練習(xí)冊答案