【題目】如圖,現(xiàn)有一張三角形紙片,,,點(diǎn),分別是,中點(diǎn),點(diǎn)是上一定點(diǎn),點(diǎn)是上一動(dòng)點(diǎn)。將紙片依次沿,剪開,得到Ⅰ、Ⅱ和Ⅲ三部分,將Ⅱ繞點(diǎn)順時(shí)針旋轉(zhuǎn),與重合,將Ⅲ繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使與重合,拼成了一個(gè)新的圖形,則這個(gè)新圖形周長(zhǎng)的最小值是( )
A.B.C.D.
【答案】C
【解析】
如圖,作AJ⊥BC交DE于O,由題意旋轉(zhuǎn)后的新圖形是平行四邊形GHPQ,周長(zhǎng)=2DE+BC+2MN=16+2MN,當(dāng)MN最小時(shí),周長(zhǎng)的值最小,根據(jù)垂線段最短求出MN的最小值即可解決問題.
解:如圖,作AJ⊥BC交DE于O,
由題意旋轉(zhuǎn)后的新圖形是平行四邊形GHPQ,周長(zhǎng)=2DE+BC+2MN,
∵AD=DB,AE=EC,
∴DE∥BC,DE=BC=4,
∵S△ABC=BCAJ=28,
∴AJ=7,
∵AD=DB,DE∥BC,
∴AO=OJ=,
∴四邊形GHPQ的周長(zhǎng)=16+2MN,
∴當(dāng)MN最小時(shí),周長(zhǎng)的值最小,根據(jù)垂線段最短可知MN的最小值為,
∴四邊形GHPQ的周長(zhǎng)的最小值為16+7=23,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)F是上一點(diǎn),連接AF交CD的延長(zhǎng)線于點(diǎn)E.
(1)求證:△AFC∽△ACE;
(2)若AC=5,DC=6,當(dāng)點(diǎn)F為的中點(diǎn)時(shí),求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線y=與直線y=x相交于AB兩點(diǎn),點(diǎn)C(2,2)、D(﹣2,﹣2)在直線上.
(1)若點(diǎn)P(1,m)為雙曲線y=上一點(diǎn),求PD﹣PC的值;
(2)若點(diǎn)P(x,y)(x>0)為雙曲線上一動(dòng)點(diǎn),請(qǐng)問PD﹣PC的值是否為定值?請(qǐng)說明理由;
(3)若點(diǎn)P(x,y)(x>0)為雙曲線上一動(dòng)點(diǎn),連接PC并延長(zhǎng)PC交雙曲線另一點(diǎn)E,當(dāng)P點(diǎn)使得PD﹣CE=2PC時(shí),求P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知,,,為線段上的動(dòng)點(diǎn),以為邊向右側(cè)作正方形,連接交于點(diǎn),則的最大值______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,是邊的中點(diǎn),將沿折疊,使點(diǎn)落在點(diǎn)處,的延長(zhǎng)線與邊交于點(diǎn).下列四個(gè)結(jié)論:①;②;③;④S正方形ABCD,其中正確結(jié)論的個(gè)數(shù)為( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與相離,過點(diǎn)作,垂足為,交于點(diǎn).點(diǎn)在直線上,連接并延長(zhǎng)交于點(diǎn),在直線上另取一點(diǎn),使.
(1)求證:是的切線;
(2)已知,,.
①求的半徑;
②求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購(gòu)進(jìn)一批成本為每件 30 元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量 y(件)與銷售單價(jià) x(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求該商品每天的銷售量 y 與銷售單價(jià) x 之間的函數(shù)關(guān)系式;
(2)若商店按單價(jià)不低于成本價(jià),且不高于 50 元銷售,則銷售單價(jià)定為多少,才能使銷售該商品每天獲得的利潤(rùn) w(元)最大?最大利潤(rùn)是多少?
(3)若商店要使銷售該商品每天獲得的利潤(rùn)不低于 800 元,則每天的銷售量最少應(yīng)為多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:①abc>0;②4a+2b+c>0;③<a<;④b>c.其中含所有正確結(jié)論的選項(xiàng)是( )
A.①②③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)要求解方程
(1)x2+3x﹣4=0(公式法);
(2)x2+4x﹣12=0(配方法);
(3)(x+4)2=7(x+4)(適當(dāng)?shù)姆椒ǎ?/span>
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com