【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于E交AB的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)若AE=6,F(xiàn)B=4,求⊙O的面積.
【答案】
(1)證明:連結AD、OD,如圖,
∵AB為⊙O的直徑,
∴∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=CD,
而OA=OB,
∴OD為△ABC的中位線,
∴OD∥AC,
∵EF⊥AC,
∴OD⊥EF,
∴EF是⊙O的切線
(2)解:設⊙O的半徑為R,
∵OD∥AE,
∴△FOD∽△FAE,
∴ = ,即 = ,
解得R=4,
∴⊙O的面積=π42=16π.
【解析】(1)連結AD、OD,根據(jù)圓周角定理可得到∠ADB=90°,即AD⊥BC,再根據(jù)等腰三角形的性質(zhì)得BD=CD,則OD為△ABC的中位線,依據(jù)三角形的中位線定理可得到OD∥AC,加上EF⊥AC,于是OD⊥EF,最后,根據(jù)切線的判定定理進行證明即可;
(2)設⊙O的半徑為R,利用OD∥AE得到△FOD∽△FAE,然后依據(jù)相似三角形對應邊成比例可得到關于R的方程,從而可求得R的值,然后利用圓的面積公式求解即可.
【考點精析】認真審題,首先需要了解圓周角定理(頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半),還要掌握切線的判定定理(切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線)的相關知識才是答題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)經(jīng)過點A(﹣1,0),B(5,﹣5),C(6,0)
(1)求拋物線的解析式;
(2)如圖,在直線AB下方的拋物線上是否存在點P使四邊形PACB的面積最大?若存在,請求出點P的坐標;若不存在,請說明理由.
(3)若點Q為拋物線的對稱軸上的一個動點,試指出使△QAB為等腰三角形的點Q一共有幾個?并請你求出其中一個點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周長為36 cm,點P從點A開始沿AB邊向B點以每秒1cm的速度移動;點Q從點B沿BC邊向點C以每秒2cm的速度移動,如果同時出發(fā),則過3s時,△BPQ的面積為____cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】超市準備購進A、B兩種品牌的飲料共100件,兩種飲料每件利潤分別是15元和13元.設購進A種飲料x件,且所購進的兩種飲料能全部賣出,獲得的總利潤為y元.
(1)求y與x的函數(shù)關系式;
(2)根據(jù)兩種飲料歷次銷量記載:A種飲料至少購進30件,B種飲料購進數(shù)量不少于A種飲料件數(shù)的2倍.問:A、B兩種飲料進貨方案有幾種?哪一種方案能使超市所獲利潤最高?最高利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】網(wǎng)絡購物越來越方便快捷,遠方的朋友通過網(wǎng)購就可以迅速品嘗到茂名的新鮮荔枝,同時也增加了種植戶的收入,種植戶老張去年將全部荔枝按批發(fā)價賣給水果商,收入6萬元,今年的荔枝產(chǎn)量比去年增加2000千克,計劃全部采用互聯(lián)網(wǎng)銷售,網(wǎng)上銷售比去年的批發(fā)價高50%,若按此價格售完,今年的收入將達到10.8萬元.
(1)去年的批發(fā)價和今年網(wǎng)上售價分別是多少?
(2)若今年老張按(1)中的網(wǎng)上售價銷售,則每天的銷量相同,20天恰好可將荔枝售完,經(jīng)調(diào)查發(fā)現(xiàn),當網(wǎng)上售價每上升0.1元/千克,每日銷量將減少5千克,將網(wǎng)上售價定為多少,才能使日銷量收入最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與理解:
如圖,一只甲蟲在5×5的方格(每個方格邊長均為1)上沿著網(wǎng)格線爬行.若我們規(guī)定:在如圖網(wǎng)格中,向上(或向右) 爬行記為“+”,向下(或向左) 爬行記為“﹣”,并且第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.
例如:從A到B記為:A→B(+1,+4),從D到C記為:D→C(﹣1,+2).
思考與應用:
(1)圖中A→C( , ),B→C( , ),D→A( , )
(2)若甲蟲從A到P的行走路線依次為:(+3,+2)→(+1,+3)→(+1,﹣2),請在圖中標出P的位置.
(3)若甲蟲的行走路線為A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),請計算該甲蟲走過的總路程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題
某中學七年級兩個班共105人,要去市科技博物館進行社會大課堂活動,老師指派小明到網(wǎng)上查閱票價信息,小明查得票價如下表:其中七班不足50人,經(jīng)估算,如果兩個班都以班為單位購票,一共應付1140元.
購票張數(shù)張 | 每張票的價格元 |
12 | |
10 | |
100以上 | a |
(1)兩個班各有多少學生?
(2)如果兩個班聯(lián)合起來,作為一個團體購票,可以省300元,請求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F.若AC=3,AB=5,則CE的長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程mx2﹣(m+2)x+2=0.
(1)證明:不論m為何值時,方程總有實數(shù)根;
(2)m為何整數(shù)時,方程有兩個不相等的正整數(shù)根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com