分析 (1)根據(jù)已知條件求出A、B、C點(diǎn)坐標(biāo),用待定系數(shù)法求出直線AB和反比例的函數(shù)解析式;
(2)聯(lián)立一次函數(shù)的解析式和反比例的函數(shù)解析式可得交點(diǎn)D的坐標(biāo),從而根據(jù)三角形面積公式求解;
(3)根據(jù)函數(shù)的圖象和交點(diǎn)坐標(biāo)即可求得.
解答 解:(1)∵OB=4,OE=2,
∴BE=2+4=6.
∵CE⊥x軸于點(diǎn)E,tan∠ABO=$\frac{AO}{BO}$=$\frac{CE}{BE}$=$\frac{1}{2}$.
∴OA=2,CE=3.
∴點(diǎn)A的坐標(biāo)為(0,2)、點(diǎn)B的坐標(biāo)為C(4,0)、點(diǎn)C的坐標(biāo)為(-2,3).
設(shè)直線AB的解析式為y=kx+b,則$\left\{\begin{array}{l}{0+b=2}\\{4k+b=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=2}\end{array}\right.$.
故直線AB的解析式為y=-$\frac{1}{2}$x+2.
設(shè)反比例函數(shù)的解析式為y=$\frac{m}{x}$(m≠0),
將點(diǎn)C的坐標(biāo)代入,得3=$\frac{m}{-2}$,
∴m=-6.
∴該反比例函數(shù)的解析式為y=-$\frac{6}{x}$.
(2)聯(lián)立反比例函數(shù)的解析式和直線AB的解析式可得$\left\{\begin{array}{l}{y=-\frac{6}{x}}\\{y=-\frac{1}{2}x+2}\end{array}\right.$,
可得交點(diǎn)D的坐標(biāo)為(6,-1),
則△BOD的面積=4×1÷2=2,
△BOC的面積=4×3÷2=6,
故△OCD的面積為2+6=8;
(3)由圖象得,一次函數(shù)值小于反比例函數(shù)值的x的取值范圍:-2<x<0或x>6.
點(diǎn)評 本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題:求反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點(diǎn),方程組無解,則兩者無交點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -8 | B. | -4 | C. | 4 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com