11.在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn).過點(diǎn)A做AF∥BC交BE的延長線于點(diǎn)F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=3,AB=4,求菱形ADCF的面積.

分析 (1)根據(jù)AAS證△AFE≌△DBE;
(2)利用全等三角形的對(duì)應(yīng)邊相等得到AF=BD.證出四邊形ADCF是平行四邊形,再由“直角三角形斜邊的中線等于斜邊的一半”得到AD=DC,從而得出結(jié)論;
(3)由直角三角形ABC與菱形有相同的高,根據(jù)等積變形求出這個(gè)高,代入菱形面積公式可求出結(jié)論.

解答 (1)證明:①∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點(diǎn),AD是BC邊上的中線,
∴AE=DE,BD=CD,
在△AEF和△DEB中,$\left\{\begin{array}{l}{∠AFE=∠DBE}&{\;}\\{∠FEA=∠BED}&{\;}\\{AE=DE}&{\;}\end{array}\right.$,
∴△AEF≌△DEB(AAS);
(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.
∵DB=DC,
∴AF=CD.
∵AF∥BC,
∴四邊形ADCF是平行四邊形,
∵∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),
∴AD=DC=$\frac{1}{2}$BC,
∴四邊形ADCF是菱形;
(3)解:連接DF,如圖所示:
∵AF∥BD,AF=BD,
∴四邊形ABDF是平行四邊形,
∴DF=AB=4,
∵四邊形ADCF是菱形,
∴菱形ADCF的面積=$\frac{1}{2}$AC?DF=$\frac{1}{2}$×3×4=6.

點(diǎn)評(píng) 本題考查了全等三角形的性質(zhì)和判定,平行四邊形的判定,菱形的判定的應(yīng)用,菱形的面積計(jì)算;熟練掌握菱形的判定與性質(zhì),證明三角形全等是解決問題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖,在?ABCD中,AC⊥AD,∠B=30°,AC=2,則?ABCD的周長是4$\sqrt{3}$+8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.如圖為實(shí)數(shù)a,b在數(shù)軸上的位置,則($\sqrt$)2+$\sqrt{(-a)^{2}}$-$\sqrt{(a-b)^{2}}$=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在?ABCD中,AE∥CF,求證:∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.已知a=-3-2,b=-0.32,c=(-3)0,$d={(-\frac{1}{3})^{-2}}$,把這四個(gè)數(shù)從小到大排列為a<b<c<d.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知矩形ABCD四個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,$-2\sqrt{2}$),B(5,$-2\sqrt{2}$),C(5,$-\sqrt{2}$),D(2,$-\sqrt{2}$)
(1)四邊形的面積是多少?
(2)將矩形ABCD向上平移$\sqrt{2}$個(gè)單位長度,求所得的四邊形A′B′C′D′的四個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,直線y=-3x+3與x軸、y軸分別交于點(diǎn)A、B,拋物線y=a(x-2)2+k經(jīng)過點(diǎn)A,B,并與x軸交于另一點(diǎn)C,其頂點(diǎn)為P.
(1)求a,k的值及點(diǎn)C的坐標(biāo);
(2)拋物線的對(duì)稱軸上有一點(diǎn)Q,使△ABQ是以AB為底邊的等腰三角形,求Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.(1)$\root{3}{-27}$+$\sqrt{{{(-3)}^2}}$-$\root{3}{-1}$
(2)27(x-3)3=-64.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+mx(m>0且m≠1)與x軸交于原點(diǎn)O和點(diǎn)A,點(diǎn)B的坐標(biāo)為(1,-1),連結(jié)AB,將線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到線段AC,連結(jié)OB、OC.
(1)求點(diǎn)A的橫坐標(biāo).(用含m的代數(shù)式表示).
(2)若m=3,則點(diǎn)C的坐標(biāo)為(2,2).
(3)當(dāng)點(diǎn)C與拋物線的頂點(diǎn)重合時(shí),求四邊形ABOC的面積.
(4)結(jié)合m的取值范圍,直接寫出∠AOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案