【題目】如圖1,長(zhǎng)、寬均為高為的長(zhǎng)方體容器,放置在水平桌面上,里面盛有水,水面高為,繞底面一棱進(jìn)行旋轉(zhuǎn)傾斜后,水面恰好觸到容器口邊緣,圖2是此時(shí)的示意圖,則圖2中水面高度為___________

【答案】

【解析】

過(guò)點(diǎn)CCFBG于點(diǎn)F,設(shè)DE=x,根據(jù)水的體積不變,列出方程,求出x的值,進(jìn)而求出CD的值,由DEC~BFC,得,進(jìn)而即可求解.

過(guò)點(diǎn)CCFBG于點(diǎn)F

設(shè)DE=x,則AD=8-x

根據(jù)題意得:(8-x+8)×3×3=3×3×6,解得:x=4

DE=4,

∵∠E=90°,

CD=

∵∠BCE=DCF=90°,

∴∠DCE=BCF,

∵∠DEC=BFC=90°,

DEC~BFC,

,即:,

CF=

故答是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5y軸于點(diǎn)A,交x軸于點(diǎn)B(﹣5,0)和點(diǎn)C(1,0),過(guò)點(diǎn)AADx軸交拋物線于點(diǎn)D.

(1)求此拋物線的表達(dá)式;

(2)點(diǎn)E是拋物線上一點(diǎn),且點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)在直線AD上,求△EAD的面積;

(3)若點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),△ABP的面積最大,求出此時(shí)點(diǎn)P的坐標(biāo)和△ABP的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ABCD,對(duì)角線AC、BD交于點(diǎn)E,點(diǎn)F在邊AB上,連接CF交線段BE于點(diǎn)G,CG2=GEGD.

(1)求證:ACF=ABD;

(2)連接EF,求證:EFCG=EGCB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一張矩形紙片ABCD,其中AD=8cmAB=6cm,先沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)C′的位置,BC′AD于點(diǎn)G

   

1)求證:BG=DG

2)求C′G的長(zhǎng);

3)如圖2,再折疊一次,使點(diǎn)DA重合,折痕ENADM,求EM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)PAB延長(zhǎng)線上一點(diǎn),∠BCP=∠A

1)求證:直線PC是⊙O的切線;

2)若CACP,⊙O的半徑為2,求CP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形中,點(diǎn)分別在邊上,點(diǎn)分別在邊上,交于點(diǎn),記

1)如圖1,當(dāng)時(shí),若,求的值;

2)如圖2,當(dāng)時(shí),求的最大值和最小值;

3)若的值為3,當(dāng)重合且為直角三角形時(shí),直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,正方形中,、分別是邊長(zhǎng)的點(diǎn),交于點(diǎn),.求證:

2)如圖2,矩形中,,、分別是邊上的點(diǎn),交于點(diǎn).求證:;

3)如圖3,若(2)種的四邊形是平行四邊形,且,則是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是⊙O的直徑,以A為圓心,弦AB為半徑畫(huà)弧交⊙O于點(diǎn)C,連結(jié)BCAD于點(diǎn)E,若DE3BC8,則⊙O的半徑長(zhǎng)為(

A.B.5C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1l2,Ol1l2分別相切于點(diǎn)A和點(diǎn)B.點(diǎn)M和點(diǎn)N分別是l1l2上的動(dòng)點(diǎn),MN沿l1l2平移.⊙O的半徑為1,1=60°.有下列結(jié)論:①MN=;②若MN與⊙O相切,則AM=;③若∠MON=90°,則MN與⊙O相切;④l1l2的距離為2,其中正確的有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案