【題目】一農(nóng)民帶上若干千克自產(chǎn)的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關系,如圖所示,結合圖象回答下列問題.

(1)農(nóng)民自帶的零錢是多少?

(2)試求降價前yx之間的關系式

(3)由表達式你能求出降價前每千克的土豆價格是多少?

(4)降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢)26,試問他一共帶了多少千克土豆?

【答案】(1) 5(2) y=x+5(0≤x≤30);(3)0.5/千克;(4)他一共帶了70千克土豆.

【解析】

試題(1)根據(jù)題意得出自帶的零錢;(2)根據(jù)圖象可知降價前售出的土豆數(shù)量為30千克,總金額為15元,然后計算單價;根據(jù)降價后的價格和金額求出降價后售出的數(shù)量,然后計算總質量.

試題解析:(1)根據(jù)圖示可得:農(nóng)民自帶的零錢是5.

(2)(205)÷30=0.5(/千克) 答:降價前他出售的土豆每千克是0.5.

(3)(2620)÷0.4+30=15+30=45(千克) 答:他一共帶了45千克土豆.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在 中, ,AC=BC, , ,垂足分別為D,E

1)若AD=25cm,DE=17cm,求BE的長.

2)如圖2,在原題其他條件不變的前提下,將CE所在直線旋轉到 ABC的外部,請你猜想ADDE,BE三者之間的數(shù)量關系,直接寫出結論:________.(不需證明)

3)如圖3,若將原題中的條件改為: ABC中,AC=BC,D,C,E三點在同一條直線上,并且有 ,其中 為任意鈍角,那么(2)中你的猜想是否還成立?若成立,請予以證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別在CD、BC的延長線上,AEBD,EFBC,tanABC=,EF=,則AB的長為( 。

A. B. C. 1 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過點A(–3,0)、B(1,0).

(1)求平移后的拋物線的表達式.

(2)設平移后的拋物線交y軸于點C,在平移后的拋物線的對稱軸上有一動點P,當BPCP之和最小時,P點坐標是多少?

(3)y=x2與平移后的拋物線對稱軸交于D點,那么,在平移后的拋物線的對稱軸上,是否存在一點M,使得以M、O、D為頂點的三角形△BOD相似?若存在,求點M坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點EAB的中點,點P從點E出發(fā),沿移動至終點C.設點P經(jīng)過的路徑長為x的面積為y,則下列圖象能大致反映yx之間的函數(shù)關系的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了落實黨的精準扶貧政策,A,B兩城決定向CD兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn).已知A,B兩城分別有肥料210噸和290噸,從A城往CD兩鄉(xiāng)運肥料的費用分別為20/噸和25/噸;從B城往C,D兩鄉(xiāng)運肥料的費用分別為15/噸和24/.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260

1)設從A城運往C鄉(xiāng)肥料x

①用含x的代數(shù)式完成下表:

C鄉(xiāng)(噸)

D鄉(xiāng)(噸)

A

x

B

總計

240

260

②設總運費為y元,寫出yx的函數(shù)關系式,并求出最少總運費;

2)由于更換車型,使從A城往C鄉(xiāng)運肥料的費用每噸減少a)元,這時從A城往C鄉(xiāng)運肥料多少噸時總運費最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A1、A2、A3、…、Anx軸上,且OA1=A1A2=A2A3=…=An1An=1,分別過點A1、A2、A3、Anx軸的垂線,交反比例函數(shù)y=(x0)的圖象于點B1、B2、B3、…、Bn,過點B2B2P1A1B1于點P1,過點B3B3P2A2B2于點P2,…,若記△B1P1B2的面積為S1,B2P2B3的面積為S2,…,BnPnBn+1的面積為Sn,則S1+S2++S2018=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近幾年,隨著電子產(chǎn)品的廣泛應用,學生的近視發(fā)生率出現(xiàn)低齡化趨勢,引起了相關部門的重視.某區(qū)為了了解在校學生的近視低齡化情況,對本區(qū)7-18歲在校近視學生進行了簡單的隨機抽樣調查,并繪制了以下兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中信息,回答下列問題:

1)這次抽樣調查中共調查了近視學生 人;

2)請補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中10-12歲部分的圓心角的度數(shù)是 ;

4)據(jù)統(tǒng)計,該區(qū)7-18歲在校學生近視人數(shù)約為10萬,請估計其中7-12歲的近視學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線x軸從左至右交于A,B兩點,與y軸交于點c.

(1)若拋物線過點T(1,-),求拋物線的解析式;

(2)在第二象限內的拋物線上是否存在點D,使得以A、B、D三點為頂點的三角形與△ABC相似?若存在,求a的值;若不存在,請說明理由.

(3)如圖2,在(1)的條件下,點P的坐標為(-1,1),點Q(6,t)是拋物線上的點,在x軸上,從左至右有M、N兩點,且MN=2,MNx軸上移動到何處時,四邊形PQNM的周長最。空堉苯訉懗龇蠗l件的點M的坐標.

查看答案和解析>>

同步練習冊答案