【題目】在如圖所示的正方形網格中,每個小正方形的邊長為1,格點三角形(頂點是網格線的交點的三角形)的頂點A、C的坐標分別為(-4,3)、(-1,1).
(1)請在如圖所示的網格平面內作出平面直角坐標系;
(2)請作出關于y對稱的△A′B′C′;
(3)寫出點的坐標 ;的面積為 .
(4)若在y軸上有點M,則能使△ABM的周長最小的點M的坐標為 .
【答案】(1)見解析;(2)見解析;(3)(2,-1),4;(4)(0,).
【解析】
(1)根據(jù)A、C兩點的坐標建立直角坐標系即可;
(2)分別作出各點關于y軸的對稱點,再順次連接即可;
(3)根據(jù)點B′在坐標系中的位置寫出其坐標,利用割補法進行計算,即可得的面積;
(4)利用待定系數(shù)法求出直線AB′的解析式,進而可得出在y軸上能使△ABM的周長最小的點M的坐標.
解:(1)坐標系如圖;
(2)如圖,△A′B′C′即為所求;
(3)由圖可知,B′(2,-1),
S△ABC=3×4-×2×4-×2×3-×1×2
=12-4-3-1
=4;
(4)如圖所示,點M即為所求點,
設直線AB′的解析式為y=kx+b(k≠0),
∵(-4,3),B′(2,-1),
∴,解得,
∴直線AB′的解析式為.
∵當x=0時,y=,
∴M(0,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線AM⊥AN,AB平分∠MAN,過點B作BC⊥BA交AN于點C;動點E、D同時從A點出發(fā),其中動點E以2cm/s的速度沿射線AN方向運動,動點D以1cm/s的速度運動;已知AC=6cm,設動點D,E的運動時間為t.
(1)當點D在射線AM上運動時滿足S△ADB:S△BEC=2:1,試求點D,E的運動時間t的值;
(2)當動點D在直線AM上運動,E在射線AN運動過程中,是否存在某個時間t,使得△ADB與△BEC全等?若存在,請求出時間t的值;若不存在,請說出理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,過點D作DF⊥BC,垂足為F,DF與AC交于點M,已知∠1=∠2.
(1)求證:CM=DM;
(2)若FB=FC,求證:AM-MD=2FM.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某中學在教學樓前新建了一座雕塑.為了測量雕塑的高度,小明在二樓找到一點,利用三角尺測得雕塑頂端點的仰角為,底部點的俯角為,小華在五樓找到一點,利用三角尺測得點的俯角為.若為,則雕塑的高度為________.(結果精確到,參考數(shù)據(jù):).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為美化小區(qū)環(huán)境,某小區(qū)有一塊面積為30m2的等腰三角形草地,測得其一邊長為10m,現(xiàn)要給這塊三角形草地圍上白色的低矮柵欄,則其長度為 m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1的解析表達式為y=-x-1,且l1與x軸交于點D,直線l2經過定點A(2,0),B(-1,3),直線l1與l2交于點C.
(1)求直線l2的函數(shù)關系式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點C的另一點P,使得△ADP與△ADC的面積相等,請寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m﹣n)2=0,(n﹣4)2=0
∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴n=4,m=4.
∴(m﹣n)2+(n﹣4)2=0,
根據(jù)你的觀察,探究下面的問題:
(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;
(2)已知△ABC的三邊長a、b、c都是正整數(shù),且滿足a2+b2﹣10a﹣12b+61=0,求△ABC的最大邊c的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,設點P到原點O的距離為ρ,OP與x軸正方向的夾角為α,則用[ρ,α]表示點P的極坐標,例如:點P的坐標為(1,1),則其極坐標為[,45°].若點Q的極坐標為[4,120°],則點Q的坐標為( )
A. (-2,2) B. (2,-2) C. (-2,-2) D. (-4,-4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=4 cm,AC=2 cm.
(1)在AB上取一點D,當AD=_________cm時,△ACD∽△ABC.
(2)在AC的延長線上取一點E,當CE=________cm時,△AEB∽△ABC此時BE與DC有怎樣的位置關系?________
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com