【題目】“構(gòu)造圖形解題”,它的應用十分廣泛,特別是有些技巧性很強的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無措,難以下手,這時,如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過構(gòu)造適合的幾何圖形,將會得到事半功倍的效果,下面介紹兩則實例:

實例一:1876年,美國總統(tǒng)伽非爾德利用實例一圖證明了勾股定理:由四邊形,化簡得:

實例二:歐幾里得的《幾何原本》記載,關(guān)于的方程的圖解法是:畫,使,,再在斜邊上截取,則的長就是該方程的一個正根(如實例二圖)

根據(jù)以上閱讀材料回答下面的問題:

1)如圖1,請利用圖形中面積的等量關(guān)系,寫出甲圖要證明的數(shù)學公式是    ,乙圖要證明的數(shù)學公式是    ,體現(xiàn)的數(shù)學思想是    

2)如圖2,按照實例二的方式構(gòu)造,連接,請用含字母、的代數(shù)式表示的長,的表達式能和已學的什么知識相聯(lián)系;

3)如圖3,已知,為直徑,點為圓上一點,過點于點,連接,設(shè),,求證:

    

        

【答案】1)完全平方公式,平方差公式,數(shù)形結(jié)合的思想;(2的表達式能和一元二次方程的求根公式相聯(lián)系;(3)證明見解析.

【解析】

1)根據(jù)大正方形面積=各個部分面積之和,即可得到完全平方公式和平方差公式,進而即可得到答案;

2)根據(jù)勾股定理以及一元二次方程的求根公式,即可得到答案;

3)連接,,易證,結(jié)合,即可得到結(jié)論.

1)如圖1中,圖甲大正方形的面積,

圖乙中大正方形的面積,即:

它們都體現(xiàn)了數(shù)形結(jié)合的思想.

故答案是:完全平方公式,平方差公式,數(shù)形結(jié)合的思想;

2)∵在中,,,

,

;

,由求根公式可得,

答:的表達式能和一元二次方程的求根公式相聯(lián)系;

3)由已知,可得,連接,

為直徑,

,

,

,,

,

,

,即,

∵在中,,

,即

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(新洲區(qū)月考)如圖1,AB為半圓O的直徑,C為圓弧上一點,過點C的直線與AB的延長線交于點E,ADCE于點D,AC平分∠DAB.

1)求證:CE是⊙O的切線.

2)若AB6,BOE的中點,CFAB,垂足為點F,求CF的長;

3)如圖2,連接ODAC于點G,若,求sinE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線yx4與拋物線y+bx+c交于坐標軸上兩點A、C,拋物線與x軸另一交點為點B

1)求拋物線解析式;

2)若動點D在直線AC下方的拋物線上;

作直線BD,交線段AC于點E,交y軸于點F,連接AD;求△ADE與△CEF面積差的最大值,及此時點D的坐標;

如圖2,作DM⊥直線AC,垂足為點M,是否存在點D,使△CDM中某個角恰好是∠ACO的一半?若存在,直接寫出點D的橫坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點EBC邊的中點,將△DCE沿DE折疊,使點C落在點F處,延長EFAB于點G,連接DGBF

(1)求證:DG平分∠ADF;

(2)AB12,求△EDG的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】距離中考體考時間越來越近,年級想了解初三年級1512名學生周末在家體育鍛煉的情況,在初三年級隨機抽取了18名男生和18名女生,對他們周末在家的鍛煉時間進行了調(diào)查,并收集得到了以下數(shù)據(jù)(單位:分鐘)

男生:28,3032,46,68,39,80,70,6657,7095,100,58,6988,99,105

女生:36,4878,9956,6235,109,29,88,88,69,7355,9098,69,72

統(tǒng)計數(shù)據(jù),并制作了如下統(tǒng)計表:

時間

男生

2

4

女生

1

5

9

3

分析數(shù)據(jù):兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)如表所示

極差

平均數(shù)

中位數(shù)

眾數(shù)

方差

男生

77

66.7

70

617.3

女生

69.7

70.5

547.2

1)請將上面的表格補充完整:    ,    ,    ,    ,    ;

2)已知該年級男女生人數(shù)差不多,根據(jù)調(diào)查的數(shù)據(jù),估計初三年級周末在家鍛煉的時間在90分鐘以上(不包含90分鐘)的同學約有多少人?

3)體育老師看了表格數(shù)據(jù)后認為初三年級的女生周末鍛煉做得比男生好,請你結(jié)合統(tǒng)計數(shù)據(jù),寫出兩條支持體育老師觀點的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】時下娛樂綜藝節(jié)目風靡全國,隨機對九年級部分學生進行了一次調(diào)查,對最喜歡《我是喜劇王》(記為A)、《王牌對王牌》(記為B)、《奔跑吧,兄弟》(記為C)、《歡樂喜劇人》(記為D)的同學進行了統(tǒng)計(每位同學只選擇一個最喜歡的節(jié)目),繪制了以下不完整的統(tǒng)計圖,請根據(jù)圖中信息解答問題:

1)求本次調(diào)查一共選取了多少名學生;

2)將條形統(tǒng)計圖補充完整;

3)若九年級共有1900名學生,估計其中最喜歡《奔跑吧,兄弟》的學生大約是多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,BC⊙O于點D,E的中點,連接AEBC于點F,∠ACB=2∠EAB

1)求證:AC⊙O的切線;

2)若cosC=,AC=6,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,有下列結(jié)論:①abc0;②2a+b0;③若m為任意實數(shù),則a+bam2+bm;④ab+c0;⑤若ax12+bx1ax22+bx2,且x1≠x2,則x1+x22.其中,正確結(jié)論的個數(shù)為( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,上一點,過的切線,交的延長線于點,過,交延長線于點,連接,交于點,交于點,連接

1)求證:;

2)連接,若,,求的長.

查看答案和解析>>

同步練習冊答案