精英家教網 > 初中數學 > 題目詳情
(2011•自貢)已知x1、x2是方程x2+6x+3=0的兩個實數根,則
x2
x1
+
x1
x2
的值等于( 。
分析:由x1、x2是方程x2+6x+3=0的兩個實數根,根據根與系數的關系求出兩根之和與兩根之積,然后將所求的式子通分后,再利用完全平方公式將兩根的平方和變形為完全平方公式與兩根之積2倍之差,將求出的兩根之和與兩根之積代入即可求出值.
解答:解:∵x1、x2是方程x2+6x+3=0的兩個實數根,
∴x1+x2=-
b
a
=-6,x1x2=
c
a
=3,
x2
x1
+
x1
x2
=
x12+x22
x1x2
=
(x1+x2)2-2x1x2 
x1x2
=
36-6
3
=10.
故選C
點評:此題考查了根與系數的關系,當一元二次方程ax2+bx+c=0(a≠0)有解,即b2-4ac≥0時,可設方程的兩解為x1,x2,則有x1+x2=-
b
a
,x1x2=
c
a
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2011•自貢)已知A,B兩個口袋中都有6個分別標有數字0,1,2,3,4,5的彩球,所有彩球除標示的數字外沒有區(qū)別.甲、乙兩位同學分別從A,B兩個口袋中隨意摸出一個球.記甲摸出的球上數字為x,乙摸出的球上數字為y,數對(x,y)對應平面直角坐標系內的點Q,則點Q落在以原點為圓心,半徑為
5
的圓上或圓內的概率為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•自貢)已知⊙O1的半徑為2cm,⊙O2的半徑為3cm,圓心O1,O2的距離為4cm,則兩圓的位置關系是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•自貢)已知直線l經過點A(1,0)且與直線y=x垂直,則直線l的解析式為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•自貢)已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少
1
a
,縱坐標增大
1
a
分別作為點A的橫、縱坐標;把頂點的橫坐標增加
1
a
,縱坐標增加
1
a
分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當實數a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
(3)你能根據特點②的啟示,對一般二次函數y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數學語言把你的猜想表達出來,并給予證明.

查看答案和解析>>

同步練習冊答案