【題目】隨著生活水平的提高,人們?cè)絹?lái)越注重營(yíng)養(yǎng)健康,有一種有機(jī)水果在市場(chǎng)上特別受歡迎,某大型超市以10元/千克的價(jià)格在產(chǎn)地收購(gòu)了6000千克水果,立即將其冷藏,請(qǐng)根據(jù)下列信息解決問(wèn)題:
①水果的市場(chǎng)價(jià)每天每千克上漲0.1元;
②平均每天有10千克的該水果損壞,不能出售;
③每天的冷藏費(fèi)用為300元;
④該水果最多保存110天;
(1)若將這批水果存放天后一次性出售,則天后這批水果的銷售單價(jià)為 元;
(2)將這批水果存放多少天后一次性出售所得利潤(rùn)為9600元?
(3)將這批水果存放多少天后一次性出售可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
【答案】(1);(2)這批水果存放80天后一次性出售所得利潤(rùn)為9600元;(3)將這批水果存在100天后一次性出售可獲得最大利潤(rùn)為10000元
【解析】
(1)根據(jù)等量關(guān)系水果的市場(chǎng)價(jià)格每天每千克上漲0.1元?jiǎng)t可求出則x天后這批水果的銷售單價(jià),再根據(jù)平均每天有10千克的水果損壞則可求出這批水果的銷售量;
(2)按照等量關(guān)系“利潤(rùn)=銷售總金額收購(gòu)成本各種費(fèi)用”列出方程求解即可;
(3)根據(jù)等量關(guān)系“利潤(rùn)=銷售總金額收購(gòu)成本各種費(fèi)用”列出函數(shù)關(guān)系式并求最大值.
解:(1)若將這批水果存放天后一次性出售,則天后這批水果的銷售單價(jià)為
故答案為:;
(2)
解得:或
∵
∴將這批水果存放80天后一次性出售所得利潤(rùn)為9600元;
(3)設(shè)利潤(rùn)為,由題意得
∵
∴拋物線開(kāi)口方向向下
∴時(shí),
∴當(dāng)時(shí),利潤(rùn)有最大值
將這批水果存在100天后一次性出售可獲得最大利潤(rùn)為10000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,DE是AB的垂直平分線,AD恰好平分∠BAC.若DE=1,則BC的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為上一點(diǎn),AD∥OC, AD交⊙O于點(diǎn)D,連接AC,CD,設(shè)∠BOC=x°,∠ACD=y°,則下列結(jié)論成立的是( )
A. x+y=90 B. 2x+y=90 C. 2x+y=180 D. x=y
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(3,0),B(0,3),過(guò)點(diǎn)B畫y軸的垂線l,點(diǎn)C在線段AB上,連結(jié)OC并延長(zhǎng)交直線l于點(diǎn)D,過(guò)點(diǎn)C畫CE⊥OC交直線l于點(diǎn)E.
(1)求∠OBA的度數(shù),并直接寫出直線AB的解析式;
(2)若點(diǎn)C的橫坐標(biāo)為2,求BE的長(zhǎng);
(3)當(dāng)BE=1時(shí),求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知在△ABC中,∠B=90°,AB=6cm,BC=12cm,點(diǎn)Q從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)P從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).
(1)如果Q、P分別從A、B兩點(diǎn)出發(fā),那么幾秒后,△PBQ的面積等于8cm2?
(2)在(1)中,△PBQ的面積能否等于10cm2?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于的二次函數(shù)(為常數(shù))與軸交于兩個(gè)不同的點(diǎn)、,與軸交于點(diǎn),其圖象的頂點(diǎn)為點(diǎn)是坐標(biāo)原點(diǎn).
(1)若、、,求此二次函數(shù)的解析式并寫出二次函數(shù)的對(duì)稱軸;
(2)如圖1,若,,為直角三角形,是以的等邊三角形,試確定的值;
(3)設(shè)為正整數(shù),且,,為任意常數(shù),令,,如果對(duì)于一切實(shí)數(shù),始終成立,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某建筑物AC頂部有一旗桿AB,且點(diǎn)A,B,C在同一條直線上,小明在地面D處觀測(cè)旗桿頂端B的仰角為30°,然后他正對(duì)建筑物的方向前進(jìn)了20米到達(dá)地面的E處,又測(cè)得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結(jié)果精確到0.1米).參考數(shù)據(jù):≈1.73,≈1.41.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課堂上老師對(duì)一道課外作業(yè)進(jìn)行了延拓,請(qǐng)同學(xué)們解答下列問(wèn)題:
(1)如圖1:∠ABC=90°,△ABE是等邊三角形,AB=6,點(diǎn)P為射線BC上任意一點(diǎn)(點(diǎn)P與點(diǎn)B不重合),連接AP,將線段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到線段AQ,連接QE,則BP與QE的數(shù)量關(guān)系是:BP QE.
(2)如圖2:在(1)的條件下,延長(zhǎng)QE交射線BC于點(diǎn)F,若設(shè)BP=x,點(diǎn)Q到射線BC的距離為y,試寫出y關(guān)于x的函數(shù)關(guān)系式.
(3)如圖3:在(1)的條件中,如果改點(diǎn)P為直線BC上的任意一個(gè)動(dòng)點(diǎn),其他條件均不變,請(qǐng)?zhí)骄?/span>AP在旋轉(zhuǎn)過(guò)程中,△ABQ周長(zhǎng)是否存在最小值,如果有,請(qǐng)求出這個(gè)值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com