【題目】下列實(shí)數(shù)中是無理數(shù)的是(
A.
B.tan30°
C.3.14
D.21

【答案】B
【解析】解:A、 是分?jǐn)?shù),是有理數(shù),故選項(xiàng)不符合題意; B、tan30°= 是無理數(shù),選項(xiàng)符合題意;
C、3.14是有限小數(shù),是有理數(shù),選項(xiàng)不符合題意;
D、21= 是分?jǐn)?shù),是有理數(shù),故選項(xiàng)不符合題意.
故選B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解整數(shù)指數(shù)冪的運(yùn)算性質(zhì)(aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))),還要掌握無理數(shù)(在理解無理數(shù)時(shí),要抓住“無限不循環(huán)”這個(gè)要點(diǎn),歸納起來有四類:(1)開方開不盡的數(shù);(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù);(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;(4)某些三角函數(shù),如sin60o)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0,②當(dāng)﹣1≤x≤3時(shí),y<0;③3a+c=0;④若(x1 , y1)(x2、y2)在函數(shù)圖象上,當(dāng)0<x1<x2時(shí),y1<y2 , 其中正確的是(
A.①②④
B.①③
C.①②③
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,過等邊三角形ABC邊AB上一點(diǎn)D作DE∥BC交邊AC于點(diǎn)E,分別取BC,DE的中點(diǎn)M,N,連接MN.

(1)發(fā)現(xiàn):在圖1中, =;

(2)應(yīng)用:如圖2,將△ADE繞點(diǎn)A旋轉(zhuǎn),請求出 的值;

(3)拓展:如圖3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分別是底邊BC,DE的中點(diǎn),若BD⊥CE,請直接寫出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,AD=6,將矩形ABCD折疊,使得點(diǎn)B落在邊AD上,記為點(diǎn)G,BC的對應(yīng)邊GI與邊CD交于點(diǎn)H,折痕為EF,則AE=時(shí),△EGH為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角板如圖①放置,圖②是由它抽象出的幾何圖形,點(diǎn)B,C,E在同一條直線上,連接CD.求證:CDBE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)后得到三角形A′B′C,若點(diǎn)B′恰好落在線段AB上,AC、A′B′交于點(diǎn)O,則∠COA′的度數(shù)是(
A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式x﹣1.

(1)當(dāng)m=1時(shí),求該不等式的解集;

(2)m取何值時(shí),該不等式有解,并求出解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知,

⑴若的中點(diǎn),則_____;

⑵若的中點(diǎn),則_____;

⑶若的中點(diǎn),則____;

⑷以此類推,若C100AC99的中點(diǎn),則AC100=____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3,將等腰直角三角板的45°角的頂點(diǎn)放在點(diǎn)B處,直角頂點(diǎn)FCD的延長線上,BFAD交于點(diǎn)G,斜邊與CD交于點(diǎn)E,CE=1,則DG的長為( )

A. B. C. D. 3

查看答案和解析>>

同步練習(xí)冊答案