【題目】如圖,在平行四邊形中,、是對角線上的兩點且,下列說法中正確的是( )
①;②;③;④四邊形為平行四邊形;⑤;⑥.
A.①⑥B.①②④⑥C.①②③④D.①②④⑤⑥
【答案】D
【解析】
先根據(jù)全等三角形進行證明,即可判斷①和②,然后作輔助線,推出OD=OF,得出四邊形BEDF是平行四邊形,求出BM=DM即可判斷④和⑤,最后根據(jù)AE=CF,即可判斷⑥.
①∵四邊形ABCD是平行四邊形,
∴AB∥DC,AB=DC,
∴∠BAC=∠ADC,
在△ABE和△DFC中
∴△ABE≌△DFC(SAS),
∴BE=DF,
故①正確.
②∵△ABE≌△DFC,
∴∠AEB=∠DFC,
∴∠BEF=∠DFE,
∴BE∥DF,
故②正確.
③根據(jù)已知的條件不能推AB=DE,故③錯誤.
④連接BD交AC于O,過D作DM⊥AC于M,過B作BN⊥AC于N,
∵四邊形ABCD是平行四邊形,
∴DO=BO,OA=OC,
∵AE=CF,
∴OE=OF,
∴四邊形BEDF是平行四邊形,
故④正確.
⑤∵BN⊥AC,DM⊥AC,
∴∠BNO=∠DMO=90°,
在△BNO和△DMO中
∴ ,
故⑤正確.
⑥∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
故⑥正確.
故答案是D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,請在下列四個關系中,選出兩個恰當?shù)年P系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.關系:①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.
(1)寫出所有成立的情況(只需填寫序號);
(2)選擇其中一種證明.
已知:在四邊形ABCD中, ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《如果想毀掉一個孩子,就給他一部手機!》這是微信朋友圈熱傳的一篇文章.國際上,法國教育部宣布從2018年9月新學期起,小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖所示的統(tǒng)計圖,已知“查資料”的人數(shù)是人.
請你根據(jù)以上信息解答下列問題:
求出本次隨機抽取的學生共有多少人;
在扇形統(tǒng)計圖中,“玩游戲”對應的百分比為______________,圓心角度數(shù)是_______________度;
補全條形統(tǒng)計圖;
該校共有學生人,估計每周使用手機時間在小時以上(不含小時)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】己知,滿足點在軸的負半軸上,直角頂點在軸上,點在軸上方.
如圖1所示,若點與原點重合,點的坐標是,則點的坐標是 ;
如圖2所示,若點的坐標是,過點作軸于,請求出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示,設點A,B,C所對應數(shù)的和是p.
(1)若以B為原點,寫出點A,C所對應的數(shù),并計算p的值;若以C為原點,p又是多少?
(2)若原點O在圖中數(shù)軸上點C的右邊,且CO=28,求p.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E,F是四邊形ABCD對角線AC上的兩點,AD∥BC,DF∥BE,AE=CF.
求證:(1)△AFD≌△CEB;
(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個結(jié)論:
①二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
②拋物線與y軸交點為(0,-3);
③二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;
④本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形中,在邊上取兩點、,使.若,,, 則以,,為邊長的三角形的形狀為( )
A.銳角三角形B.直角三角形C.鈍角三角形D.隨,,的值而定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com