【題目】某造紙廠為了保護(hù)環(huán)境,準(zhǔn)備購(gòu)買A,B兩種型號(hào)的污水處理設(shè)備共6臺(tái),用于同時(shí)治理不同成分的污水,若購(gòu)買A型2臺(tái),B型3臺(tái)需54萬元,購(gòu)買A型4臺(tái)、B型2臺(tái)需68萬元.
(1)求出A型、B型污水處理設(shè)備的單價(jià);
(2)經(jīng)核實(shí),一臺(tái)A型設(shè)備一個(gè)月可處理污水220噸,一臺(tái)B型設(shè)備一個(gè)月可處理污水180噸,如果該企業(yè)每月的污水處理量不低于1150噸,問共有幾種購(gòu)買方案?請(qǐng)你為該企業(yè)設(shè)計(jì)一種最省錢的購(gòu)買方案并求此時(shí)的購(gòu)買費(fèi)用.
【答案】(1)A型污水處理設(shè)備的單價(jià)為12萬元,B型污水處理設(shè)備的單價(jià)為10萬元;(2)詳見解析.
【解析】
(1)根據(jù)題意結(jié)合購(gòu)買A型2臺(tái)、B型3臺(tái)需54萬,購(gòu)買A型4臺(tái)、B型2臺(tái)需68萬元分別得出等式求出答案;
(2)利用該企業(yè)每月的污水處理量不低于1150噸,得出不等式求出答案.
(1)設(shè)A型污水處理設(shè)備的單價(jià)為x萬元,B型污水處理設(shè)備的單價(jià)為y萬元,根據(jù)題意可得:,
解得:.
答:A型污水處理設(shè)備的單價(jià)為12萬元,B型污水處理設(shè)備的單價(jià)為10萬元;
(2)設(shè)購(gòu)進(jìn)a臺(tái)A型污水處理器,根據(jù)題意可得:
200a+180(6﹣a)≥1150,
解得:a≥3.5,
因?yàn)?/span>a是整數(shù),
所以a=4,5,6,
所以6﹣a=2,1,0,
所以有3種方案:
方案一:購(gòu)進(jìn)4臺(tái)A型污水處理設(shè)備,購(gòu)進(jìn)2臺(tái)B型污水處理設(shè)備;
方案二:購(gòu)進(jìn)5臺(tái)A型污水處理設(shè)備,購(gòu)進(jìn)1臺(tái)B型污水處理設(shè)備;
方案三:購(gòu)進(jìn)6臺(tái)A型污水處理設(shè)備,購(gòu)進(jìn)0臺(tái)B型污水處理設(shè)備.
∵A型污水處理設(shè)備單價(jià)比B型污水處理設(shè)備單價(jià)高,
∴A型污水處理設(shè)備買越少,越省錢,
∴購(gòu)進(jìn)4臺(tái)A型污水處理設(shè)備,購(gòu)進(jìn)2臺(tái)B型污水處理設(shè)備最省錢.
購(gòu)買的費(fèi)用:4×12+2×10=68(萬元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】榮昌公司要將本公司100噸貨物運(yùn)往某地銷售,經(jīng)與春晨運(yùn)輸公司協(xié)商,計(jì)劃租用甲、乙兩種型號(hào)的汽車共6輛,用這6輛汽車一次將貨物全部運(yùn)走,其中每輛甲型汽車最多能裝該種貨物16噸,每輛乙型汽車最多能裝該種貨物18噸.已知租用1輛甲型汽車和2輛乙型汽車共需費(fèi)用2500元;租用2輛甲型汽車和1輛乙型汽車共需費(fèi)用2450元,且同一種型號(hào)汽車每輛租車費(fèi)用相同.
(1)求租用一輛甲型汽車、一輛乙型汽車的費(fèi)用分別是多少元?
(2)若榮昌公司計(jì)劃此次租車費(fèi)用不超過5000元.通過計(jì)算求出該公司有幾種租車方案?請(qǐng)你設(shè)計(jì)出來,并求出最低的租車費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知兩地相距6千米,甲騎自行車從地出發(fā)前往地,同時(shí)乙從地出發(fā)步行前往地.
(1)已知甲的速度為16千米/小時(shí),乙的速度為4千米/小時(shí),求兩人出發(fā)幾小時(shí)后甲追上乙;
(2)甲追上乙后,兩人都提高了速度,但甲比乙每小時(shí)仍然多行12千米,甲到達(dá)地后立即返回,兩人在兩地的中點(diǎn)處相遇,此時(shí)離甲追上乙又經(jīng)過了2小時(shí).求兩地相距多少千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,AB∥CD,∠PAB=120°,∠PCD=110°,求∠APC的度數(shù).小穎同學(xué)的解題思路是:如圖2,過點(diǎn)P作PE∥AB,請(qǐng)你接著完成解答;如圖3,點(diǎn)A、B在射線OM上,點(diǎn)C、D在射線ON上,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng)(點(diǎn)P與A、B、O三點(diǎn)不重合).
(2)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),判斷∠CPD與∠ADP、∠BCP之間的數(shù)量關(guān)系,并說明理由;
(3)當(dāng)點(diǎn)P在線段AB外運(yùn)動(dòng)時(shí),判斷∠CPD與∠ADP、∠BCP之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與x軸,y軸的正半軸分別交于點(diǎn)A,B,AB=2,∠OAB=45°
(1)求一次函數(shù)的解析式;
(2)如果在第二象限內(nèi)有一點(diǎn)C(a,);試用含有a的代數(shù)式表示四邊形ABCO的面積,并求出當(dāng)△ABC的面積與△ABO的面積相等時(shí)a的值;
(3)在x軸上,是否存在點(diǎn)P,使△PAB為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,以AC邊為直徑的⊙O交BC于點(diǎn)D,在劣弧上取一點(diǎn)E使∠EBC=∠DEC,延長(zhǎng)BE依次交AC于點(diǎn)G,交⊙O于H.
(1)求證:AC⊥BH;
(2)若∠ABC=45°,⊙O的直徑等于10,BD=8,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀下文,尋找規(guī)律:
已知 x≠1 時(shí),(1-x)(1+x)=1-x,
(1-x)(1+x+x)=1-x,
(1-x)(1+x+x+x)=1-x.…
觀察上式,并猜想:
(1-x)(1+x+x+ x+x)= ____________. (1-x)(1+x+x+…+x)= ____________.
(2) 通過以上規(guī)律,請(qǐng)你進(jìn)行下面的探素:
①(a-b)(a+b)= ____________.
②(a-b)(a+ab+b)= ____________.
③(a-b)(a+a+ab+b )= ____________.
(3) 根據(jù)你的猜想,計(jì)算:
1+2+2+…+2+2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,AB=4,AD=2,點(diǎn)Q與點(diǎn)P同時(shí)從點(diǎn)A出發(fā),點(diǎn)Q以每秒1個(gè)單位的速度沿A→D→C→B的方向運(yùn)動(dòng),點(diǎn)P以每秒3個(gè)單位的速度沿A→B→C→D的方向運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們同時(shí)停止運(yùn)動(dòng)。設(shè)Q點(diǎn)運(yùn)動(dòng)的時(shí)間為(秒),在整個(gè)運(yùn)動(dòng)過程中,求解下面問題:
(1)當(dāng)P、Q相遇時(shí),求出的值(列方程解決問題);
(2)當(dāng)△APQ的面積為時(shí),此時(shí)t的值是_________;
(3)當(dāng)△APQ為直角三角形時(shí),直接寫出相應(yīng)的的值或取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com