【題目】已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,則下列結(jié)論:①AE=(AB+AD);②∠DAB+∠DCB=180;③CD=CB;④S S =S.其中正確結(jié)論的是_________________________.

【答案】①、②、③、④

【解析】

AE取點F,使EF=BE.利用已知條件AB=AD+2BE,可得AD=AF,進(jìn)而證出AE=AB+AD);

②在AB上取點F,使BE=EF,連接CF.先由SAS證明△ACD≌△ACF,得出∠ADC=AFC;再根據(jù)線段垂直平分線、等腰三角形的性質(zhì)得出∠CFB=B;然后由鄰補(bǔ)角定義及四邊形的內(nèi)角和定理得出∠DAB+DCB=180°;

③根據(jù)全等三角形的對應(yīng)邊相等得出CD=CF,根據(jù)線段垂直平分線的性質(zhì)性質(zhì)得出CF=CB,從而CD=CB;

④由于△CEF≌△CEB,△ACD≌△ACF,根據(jù)全等三角形的面積相等易證SACE-SBCE=SADC

①在AE取點F,使EF=BE.

AB=AD+2BE=AF+EF+BE,EF=BE,

AB=AD+2BE=AF+2BE

AD=AF,

AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,

AE=(AB+AD),故①正確;

②在AB上取點F,使BE=EF,連接CF.

在△ACD與△ACF中,∵AD=AF,∠DAC=FACAC=AC,

∴△ACD≌△ACF

∴∠ADC=AFC.

CE垂直平分BF,

CF=CB,

∴∠CFB=B.

又∵∠AFC+CFB=180,

∴∠ADC+B=180,

∴∠DAB+DCB=360(ADC+B)=180,故②正確;

③由②知,ACD≌△ACF,∴CD=CF,

又∵CF=CB,

CD=CB,故③正確;

④易證△CEF≌△CEB,

SACESBCE=SACESFCE=SACF

又∵△ACD≌△ACF,

SACF=SADC,

SACESBCE=SADC,故④正確

故答案為:①、②、③、④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與x軸、y軸分別交于A、B兩點,與反比例函數(shù)的圖象交于C、D兩點,如果A點的坐標(biāo)為(2,0),點C、D分別在第一、三象限,且OA=OB=AC=BD,試求一次函數(shù)和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】越來越多的人在用微信付款、轉(zhuǎn)賬.把微信賬戶里的錢轉(zhuǎn)到銀行卡叫做提現(xiàn),自201631日起,每個微信賬戶終身享有1000元的免費提現(xiàn)額度,當(dāng)累計提現(xiàn)金額超過1000元時,超出的部分需支付0.1%的手續(xù)費,以后每次提現(xiàn)支付的手續(xù)費均為提現(xiàn)金額的0.1%

1)小明用自己的微信賬戶第一次提現(xiàn)金額為1500元,需支付手續(xù)費   元.

2)小麗使用微信至今,用自己的微信賬戶共提現(xiàn)三次,提現(xiàn)金額和手續(xù)費如下:

第一次

第二次

第三次

提現(xiàn)金額

a

b

2a+3b

手續(xù)費/

0

0.2

3.1

求小麗前兩次提現(xiàn)的金額分別為多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只漁船在燈塔C的正西方向10海里的A處,以20海里/時的速度沿北偏東30°方向行駛.

1)多長時間后,漁船距燈塔最近?

2)多長時間后,漁船行駛到燈塔的正北方向?此時漁船距燈塔有多遠(yuǎn)?(其中:202-102=17.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店進(jìn)行店慶活動決定購進(jìn)甲、乙兩種紀(jì)念品,若購進(jìn)甲種紀(jì)念品1乙種紀(jì)念品2,需要160;購進(jìn)甲種紀(jì)念品2乙種紀(jì)念品3,需要280.

(1)購進(jìn)甲乙兩種紀(jì)念品每件各需要多少元?

(2)該商場決定購進(jìn)甲乙兩種紀(jì)念品100并且考慮市場需求和資金周轉(zhuǎn),用于購買這些紀(jì)念品的資金不少于6300同時又不能超過6430,則該商場共有幾種進(jìn)貨方案?

(3)若銷售每件甲種紀(jì)念品可獲利30,每件乙種紀(jì)念品可獲利12,在第(2)問中的各種進(jìn)貨方案中哪種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市開展美麗泰安,創(chuàng)衛(wèi)同行活動,某校倡議學(xué)生利用雙休日在某公園參加義務(wù)勞動,為了解同學(xué)們勞動情況,學(xué)校隨機(jī)調(diào)查了部分同學(xué)的勞動時間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計圖,根據(jù)圖中信息可知扇形圖中的“1.5小時部分圓心角的度數(shù)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△中,,分別是邊,上的點,且,交于點,的延長線交于點,若,則圖中的全等三角形共有( )

A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC,∠EAD=∠C

1)試判斷AECD的位置關(guān)系,并說明理由;

2)若∠FEC=∠BAE,∠EFC50°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面兩個統(tǒng)計圖反映的是甲、乙兩所學(xué)校三個年級的學(xué)生在各校學(xué)生總?cè)藬?shù)中的占比情況,下列說法錯誤的是(

A.甲校中七年級學(xué)生和八年級學(xué)生人數(shù)一樣多B.乙校中七年級學(xué)生人數(shù)最多

C.乙校中八年級學(xué)生比九年級學(xué)生人數(shù)少D.甲、乙兩校的九年級學(xué)生人數(shù)一樣多

查看答案和解析>>

同步練習(xí)冊答案