【題目】數(shù)學(xué)活動課上,小明同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖像、性質(zhì)進行了探究,下面是小明同學(xué)探究過程,請補充完整:

如圖1,已知在,,,點邊上的一個動點,連接.設(shè)

(初步感知)

1)當(dāng)時,則①________,②________;

(深入思考)

2)試求之間的函數(shù)關(guān)系式并寫出自變量的取值范圍;

3)通過取點測量,得到了的幾組值,如下表:

0

0.5

1

1.5

2.

2.5

3

3.5

4

2

1.8

1.7

_____

2

2.3

2.6

3.0

_____

(說明:補全表格時相關(guān)數(shù)值保留一位小數(shù))

1)建立平面直角坐標(biāo)系,如圖2,描出已補全后的表中各對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;

2)結(jié)合畫出的函數(shù)圖象,寫出該函數(shù)的兩條性質(zhì):

________________________________;②________________________________

【答案】1)①;②;(2;(31.83.5;1)作圖見解析;2)①的最小值為(或1.7),②當(dāng)時,增大而減。

【解析】

1)根據(jù)含30度直角三角形的性質(zhì)求出BP,CP即可;

2)過,分兩種情況:①當(dāng)時,②當(dāng)時,分別利用勾股定理計算即可;

3)分別求出x1.5x4y的值,即可補全表格;

1)描點、連線即可;

2)根據(jù)函數(shù)圖象,可從最值和增減性方面寫出函數(shù)的性質(zhì).

解:(1)當(dāng)時,BPBC1,CP

故答案為:①;②

2)過,

由(1)可知,,,

①當(dāng)時,如圖1-1,,

②當(dāng)時,如圖1-2,,

綜合①②可得:;

3)當(dāng)x1.5時,

當(dāng)x4時,

0

0.5

1

1.5

2.

2.5

3

3.5

4

2

1.8

1.7

1.8

2

2.3

2.6

3.0

3.5

1)函數(shù)圖象如圖所示:

2)由函數(shù)圖象得:①的最小值為(或1.7);②當(dāng)時,增大而減。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)八年級有3000名學(xué)生參加“愛我中華”知識競賽活動,為了了解本次知識競賽的成績分布情況,從中抽取了部分學(xué)生的得分進行統(tǒng)計.

成績x(分)

頻數(shù)

頻率

50≤x60

10

a

60≤x70

16

0.08

70≤x80

b

0.20

請你根據(jù)以上的信息,回答下列問題:

(1) a= ,b= ;

(2) 在扇形統(tǒng)計圖中,“成績x滿足50≤x60”對應(yīng)扇形的圓心角大小是 ;

(3) 若將得分轉(zhuǎn)化為等級,規(guī)定:50≤x60評為D,60≤x70評為C,70≤x90評為B,90≤x100評為A.這次全區(qū)八年級參加競賽的學(xué)生約有 學(xué)生參賽成績被評為“B”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,老師提出如下問題:如何使用尺規(guī)完成“過直線l外一點P作已知直線l的平行線”.

小明的作法如下:

①在直線l上取一點A,以點A為圓心,AP長為半徑作弧,交直線l于點B;

②分別以P,B為圓心,以AP長為半徑作弧,兩弧相交于點Q(與點A不重合);

③作直線PQ.所以直線PQ就是所求作的直線.根據(jù)小明的作圖過程,

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:∵ABAP      

∴四邊形ABQP是菱形(   )(填推理的依據(jù)).

PQl

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點,是以點為圓心,為半徑的圓上的動點,是線段的中點,連接,則線段的最小值是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點D是邊BC上的動點,連接AD,點C關(guān)于直線AD的對稱點為點E,射線BE與射線AD交于點F.

1)在圖1中,依題意補全圖形;

2)記),求的大;(用含的式子表示)

3)若△ACE是等邊三角形,猜想EFBC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形具有不穩(wěn)定性,如圖,在平面直角坐標(biāo)系中,矩形的邊軸上,且點,邊長為.現(xiàn)固定邊,向右推動矩形使點落在軸上(落點記為),點的對應(yīng)點記為,已知矩形與推動后形成的平行四邊形的面積比為,則點坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

對于任意正實數(shù)ab,

當(dāng)且僅當(dāng)時,等號成立.

結(jié)論:在均為正實數(shù))中,若為定值當(dāng)且僅當(dāng)時,a+b有最小值

拓展:對于任意正實數(shù),都有當(dāng)且僅當(dāng)時,等號成立.

(a、bc均為正實數(shù))中,若為定值,則當(dāng)且僅當(dāng)時,有最小值

例如:,當(dāng)且僅當(dāng),即時等號成立.

又如:若的最小值時,因為當(dāng)且僅當(dāng),即時等號成立,故當(dāng)時,有最小值

根據(jù)上述材料,解答下列問題:

1)若a為正數(shù),則當(dāng)a=______時,代數(shù)式取得最小值,最小值為_____;

2)已知函數(shù)與函數(shù),求函數(shù)的最小值及此時的值;

3)我國某大型空載機的一次空載運輸成本包含三部分:一是基本運輸費用,共8100元;二是飛行耗油,每一百公里1200元;三是飛行報耗費用,飛行報耗費用與路程(單位:百公里)的平方成正比,比例系數(shù)為0.04,設(shè)該空載機的運輸路程為百公里,則該空載機平均每一百公里的運輸成本最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x 軸交于點 A、B,與 y 軸交于點 C,且 OC2OB, D 為線段 OB 上一動點(不與點 B 重合),過點 D 作矩形 DEFH,點 H、F 在拋物線上,點 E x 上.

1)求拋物線的解析式;

2)當(dāng)矩形 DEFH 的周長最大時,求矩形 DEFH 的面積;

3)在(2)的條件下,矩形 DEFH 不動,將拋物線沿著 x 軸向左平移 m 個單位,拋物線與矩形 DEFH的邊交于點 M、N,連接 M、N.若 MN 恰好平分矩形 DEFH 的面積,求 m 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】題目:為了美化環(huán)境,某地政府計劃對轄區(qū)內(nèi)的土地進行綠化.為了盡快完成任務(wù),實際平均每月的綠化面積是原計劃的15倍,結(jié)果提前2個月完成任務(wù).求原計劃平均每月的綠化面積.

甲同學(xué)所列的方程為

乙同學(xué)所列的方程為

1)甲同學(xué)所列的方程中表示 .乙同學(xué)所列的方程中表示

2)任選甲、乙兩同學(xué)的其中一個方法解答這個題目.

查看答案和解析>>

同步練習(xí)冊答案