【題目】已知拋物線y=ax2+bx+c(a>0)的對(duì)稱軸為直線x=1,且經(jīng)過點(diǎn)(﹣1,y1),(﹣2,y2),試比較y1和y2的大小:y1____y2(填“>”,“<”或“=”).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在函數(shù)y=x的圖象上,從左向右第3個(gè)正方形中的一個(gè)頂點(diǎn)A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn,則Sn的值為__.(用含n的代數(shù)式表示,n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)都在格點(diǎn)上,且△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,C點(diǎn)坐標(biāo)為(-2,1)。
(1)請(qǐng)直接寫出A1的坐標(biāo) ;并畫出△A1B1C1.
(2)P(a,b)是△ABC的AC邊上一點(diǎn),將△ABC平移后點(diǎn)P的對(duì)稱點(diǎn)P'(a+2,b﹣6),請(qǐng)畫出平移后的△A2B2C2.
(3)若△A1B1C1和△A2B2C2關(guān)于某一點(diǎn)成中心對(duì)稱,則對(duì)稱中心的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點(diǎn)M,延長ED到H使DH=BM,連接AM,AH,則以下四個(gè)結(jié)論:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABCD= AM2.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線l1與直線l2平行,且它們之間的距離為2,A、B是直線l1上的兩個(gè)定點(diǎn),C、D是直線l2上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),AB=CD=5,連接AC、BD、BC,將△ABC沿BC折疊得到△A1BC.
(1)求四邊形ABDC的面積.
(2)當(dāng)A1與D重合時(shí),四邊形ABDC是什么特殊四邊形,為什么?
(3)當(dāng)A1與D不重合時(shí):①連接A1、D,求證:A1D∥BC;②若以A1,B,C,D為頂點(diǎn)的四邊形為矩形,且矩形的邊長分別為a,b,求(a+b)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列性質(zhì)中,平行四邊形不一定具備的是( )
A.鄰角互補(bǔ)
B.對(duì)角互補(bǔ)
C.對(duì)邊相等
D.對(duì)角線互相平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為計(jì)算簡便,把(-2.4)-(-4.7)-(+0.5)+(+3.4)+(-3.5)寫成省略加號(hào)的和的形式,并按要求交換加數(shù)的位置正確的是( ).
A. -2.4+3.4-4.7-0.5-3.5
B. -2.4+3.4+4.7+0.5-3.5
C. -2.4+3.4+4.7-0.5-3.5
D. -2.4+3.4+4.7-0.5+3.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有( )
①所有的有理數(shù)都能用數(shù)軸上的點(diǎn)表示;
②符號(hào)不同的兩個(gè)數(shù)互為相反數(shù);
③有理數(shù)分為正數(shù)和負(fù)數(shù);
④兩數(shù)相減,差一定小于被減數(shù);
⑤兩數(shù)相加,和一定大于任何一個(gè)加數(shù).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋轉(zhuǎn)得到的.
(1)請(qǐng)寫出旋轉(zhuǎn)中心的坐標(biāo)是 ,旋轉(zhuǎn)角是 度;
(2)以(1)中的旋轉(zhuǎn)中心為中心,分別畫出△A1AC1順時(shí)針旋轉(zhuǎn)90°、180°的三角形;
(3)設(shè)Rt△ABC兩直角邊BC=a、AC=b、斜邊AB=c,利用變換前后所形成的圖案證明勾股定理.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com