【題目】已知:如圖所示,一次函數(shù)有y=﹣2x+3的圖象與x軸、y軸分別交于A、C兩點,二次函數(shù)y=x2+bx+c的圖象過點C,且與一次函數(shù)在第二象限交于另一點B,若AC:CB=1:2,那么這二次函數(shù)的頂點坐標為_____.
【答案】(﹣,).
【解析】
由一次函數(shù)y=﹣2x+3可求出A、C兩點的坐標,再根據(jù)B也在此直線上,可設出B點坐標,由AC:CB=1:2可知B點坐標,把B、C點坐標代入二次函數(shù)的解析式可求出b、c的值,從而求出其解析式及頂點坐標.
∵一次函數(shù)有y=﹣2x+3的圖象與x軸、y軸分別交于A、C兩點,∴令x=0,得:y=3,令y=0,得:x=,∴A(,0),C(0,3),因為點B在直線y=﹣2x+3的圖象上,所以設B點(x,﹣2x+3).
∵AC:CB=1:2,∴CB=2AC,∴=2,則x2=9,解得:x=3(舍去),x=﹣3,∴x=﹣3.
把B(﹣3,9)C(0,3)代入二次函數(shù)解析式得:,解得:,故二次函數(shù)的解析式為y=x2+x+3.
∵y=x2+x+3=,故頂點坐標為(﹣).
故答案為:(﹣).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=3cm,BC=5cm;,BE平分∠ABC,交AD于點E,交CD延長線于點F,則DE+DF的長度為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),,,垂足分別為、,.點在線段上以的速度由點向點運動,同時點在射線上運動.它們運動的時間為(當點運動結束時,點運動隨之結束).
(1)若點的運動速度與點的運動速度相等,當時,與是否全等,并判斷此時線段和線段的位置關系,請分別說明理由;
(2)如圖(2),若“,”改為“”,點的運動速度為,其它條件不變,當點、運動到何處時有與全等,求出相應的的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于二次函數(shù)y=ax2+bx+c的圖象有下列命題,其中是假命題的個數(shù)是( )
①當c=0時,函數(shù)的圖象經(jīng)過原點;
②當b=0時,函數(shù)的圖象關于y軸對稱;
③函數(shù)的圖象最高點的縱坐標是;
④當c>0且函數(shù)的圖象開口向下時,方程ax2+bx+c=0必有兩個不相等的實根.
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,AB=DB,BE平分∠ABC,交AC邊于點E,連接DE.
(1)求證:AE=DE;
(2)若∠A=100°,∠C=50°,求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC是等邊三角形,點P是BC上一動點(點P與點B、C不重合),過點P作PM∥AC交AB于M,PN∥AB交AC于N,連接BN、CM.
(1)求證:PM+PN=BC;
(2)在點P的位置變化過程中,BN=CM是否成立?試證明你的結論;
(3)如圖②,作ND∥BC交AB于D,則圖②成軸對稱圖形,類似地,請你在圖③中添加一條或幾條線段,使圖③成軸對稱圖形(畫出一種情形即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,中,,點在數(shù)軸-1處,點在數(shù)軸1處,,,則數(shù)軸上點對應的數(shù)是 .
(2)如圖2,點是直線上的動點,過點作垂直軸于點,點是軸上的動點,當以,,為頂點的三角形為等腰直角三角形時點的坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com