【題目】如圖,矩形中,點分別在邊與上,點在對角線上,,.
求證:四邊形是平行四邊形.
若,,,求的長.
【答案】(1)證明見詳解;(2)5
【解析】
(1)依據矩形的性質,即可得出△AEG≌△CFH,進而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四邊形EGFH是平行四邊形;
(2)由菱形的性質,即可得到EF垂直平分AC,進而得出AF=CF=AE,設AE=x,則FC=AF=x,DF=8-x,依據Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的長.
解:(1)∵矩形ABCD中,AB∥CD,
∴∠FCH=∠EAG,
又∵CD=AB,BE=DF,
∴CF=AE,
又∵CH=AG,
∴△AEG≌△CFH,
∴GE=FH,∠CHF=∠AGE,
∴∠FHG=∠EGH,
∴FH∥GE,
∴四邊形EGFH是平行四邊形;
(2)如圖,連接EF,AF,
∵EG=EH,四邊形EGFH是平行四邊形,
∴四邊形GFHE為菱形,
∴EF垂直平分GH,
又∵AG=CH,
∴EF垂直平分AC,
∴AF=CF=AE,
設AE=x,則FC=AF=x,DF=8-x,
在Rt△ADF中,AD2+DF2=AF2,
∴42+(8-x)2=x2,
解得x=5,
∴AE=5.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠A=45°,過點C作CD⊥AB于點D,E為AC的中點,連接EB,交CD于點F.
(1)如圖1,若∠EBA=30°,EB=2,求AE的長:
(2)如圖2,若F恰好為EB的中點,求證:CF=DF+AD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( 。
A. 購買江蘇省體育彩票有“中獎”與“不中獎”兩種情況,所以中獎的概率是
B. 國家級射擊運動員射靶一次,正中靶心是必然事件
C. 如果在若干次試驗中一個事件發(fā)生的頻率是,那么這個事件發(fā)生的概率一定也是
D. 如果車間生產的零件不合格的概率為 ,那么平均每檢查1000個零件會查到1個次品
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:如圖,若雙曲線(k>0)與它的其中一條對稱軸y=x相交于兩點A,B,則線段AB的長稱為雙曲線(k>0)的對徑.
(1)求雙曲線的對徑;
(2)若某雙曲線(k>0)的對徑是.求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某無人機于空中A處探測到目標B、D的俯角分別是30°、60°,此時無人機的飛行高度AC為60m.隨后無人機從A處繼續(xù)水平飛行30m到達A′處.
(1)求A、B之間的距離:
(2)求從無人機A′上看目標D的俯角的正切值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AC=6 ,點D為直線AB上一點,且AB=3BD,直線CD與直線BC所夾銳角的正切值為 ,并且CD⊥AC,則BC的長為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形中,,,為的中點,以點為圓心、長為半徑作圓,恰好點在上,連接,若,下列說法中不正確的是( )
A. D是劣弧BE的中點 B. CD是⊙O的切線 C. AE//OD D. ∠DOB=∠EAD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,測量隊為了測量某地區(qū)山頂的海拔高度,選點作為觀測點,從點測量山頂的仰角(視線在水平線上方,與水平線所夾的角)為,在比例尺為的該地區(qū)等高線地形圖上,量得這兩點的圖上距離為厘米,則山頂的海拔高度為( )
A. 米 B. 米 C. 米 D. 米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根x1、x2.
(1)求實數k的取值范圍.
(2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com