如圖,已知直線AB、CD相交于點(diǎn)O,OE平分∠AOB,∠EOC=28°25′.
(1)求∠AOD的度數(shù);
(2)判斷∠AOD與∠COB的大小關(guān)系,并說理由.
考點(diǎn):對頂角、鄰補(bǔ)角,度分秒的換算,角平分線的定義
專題:
分析:(1)根據(jù)兩直線相交可得∠AOB=∠COD=180°,由OE平分∠AOB,知∠AOE=∠BOE=90°,于是∠AOD=180°-∠AOE-∠EOC計(jì)算即可;
(2)因?yàn)椤螧OC與∠AOD是對頂角所以相等.
解答:解:(1)∵直線AB、CD相交于點(diǎn)O,
∴∠AOB=∠COD=180°,
∵OE平分∠AOB,
∴∠AOE=∠BOE=90°,
∴∠AOD=180°-∠AOE-∠EOC=180°-90°-28°25′=61°35′;

(2)∠AOD=∠COB.
因?yàn)椤螧OC與∠AOD是對頂角所以相等.
點(diǎn)評:本題考查了對頂角的性質(zhì)、度分秒的換算以及角平分線的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線a,b交于點(diǎn)O,∠1=30°,那么∠2的度數(shù)為( 。
A、150°B、120°
C、60°D、30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

直線y=
3
4
x+6和x軸,y軸分別交于點(diǎn)E,F(xiàn),點(diǎn)A是線段EF上一動(dòng)點(diǎn)(不與點(diǎn)E重合),過點(diǎn)A作x軸垂線,垂足是點(diǎn)B,以AB為邊向右作矩形ABCD,AB:BC=3:4.
(1)當(dāng)點(diǎn)A與點(diǎn)F重合時(shí)(圖1),求證:四邊形ADBE是平行四邊形,并求直線DE的表達(dá)式;
(2)當(dāng)點(diǎn)A不與點(diǎn)F重合時(shí)(圖2),四邊形ADBE仍然是平行四邊形?說明理由,此時(shí)你還能求出直線DE的表達(dá)式嗎?若能,請你出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,E、F分別在CD、AB上,且AF=CE,F(xiàn)G⊥AD于G,EH⊥BC于H,求證:四邊形EGFH是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

甲種電影票每張20元,乙種電影票每張15元,若購買甲、乙兩種電影票共40張,恰好用去700元,則甲種電影票共買了多少張?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算
(1)21-(-5)2×(-1)
(2)
16
-(
3-27
+4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在直角△ABC中,∠C=90°,AC=8cm,BC=4cm.動(dòng)點(diǎn)P在線段BC上以1cm/s的速度從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C.過點(diǎn)P作PE⊥BC與AB交于點(diǎn)E,以PE為對稱軸將PE右側(cè)的圖形翻折得到△B′PE,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).
(1)求點(diǎn)B′落在邊AC上時(shí)x的值.
(2)當(dāng)x>0時(shí),設(shè)△B′PE和直角△ABC重疊部分圖形面積為y(cm2),求y與x之間的函數(shù)關(guān)系式.
(3)如圖②,點(diǎn)P運(yùn)動(dòng)的同時(shí)另有一動(dòng)點(diǎn)D在線段AC上以2cm/s的速度從點(diǎn)C運(yùn)動(dòng)到點(diǎn)A.Q為CD的中點(diǎn),以DQ為斜邊在線段AC右側(cè)作等腰直角△DQM.
①求當(dāng)(2)中△B′PE和直角△ABC重疊部分圖形面積是△DQM的面積4倍時(shí)x的取值范圍.
②當(dāng)△DQM 的頂點(diǎn)落在△B′PE的邊上時(shí),直接寫出所有符合條件的x值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,A、B是直線a上的兩個(gè)定點(diǎn),點(diǎn)C、D在直線b上運(yùn)動(dòng)(點(diǎn)C在點(diǎn)D的左側(cè)),AB=CD=4cm,已知a∥b,a、b間的距離為
3
cm,連接AC、BD、BC,把△ABC沿BC折疊得△A1BC.
(1)當(dāng)A1、D兩點(diǎn)重合時(shí),則AC=
 
cm;
(2)當(dāng)A1、D兩點(diǎn)不重合時(shí),
①連接A1D,探究A1D與BC的位置關(guān)系,并說明理由;
②若以A1、C、B、D為頂點(diǎn)的四邊形是矩形,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算
(1)(x42•x-3
(2)(
4
a+2
-a-2)÷
a+4
a+2

(3)分解因式:m2-16
(4)分解因式:6xy2+9x2y+y3

查看答案和解析>>

同步練習(xí)冊答案