【題目】閱讀理解:在平面直角坐標系中,任意兩點,之間的位置關(guān)系有以下三種情形;

①如果軸,則,

②如果軸,則,

③如果軸、軸均不平行,如圖,過點作與軸的平行線與過點作與軸的平行線相交于點,則點坐標為,由①得;由②得;根據(jù)勾股定理可得平面直角坐標系中任意兩點的距離公式

1)若點坐標為,點坐標為________

2)若點坐標為,點坐標為,點軸上的動點,直接寫出最小值=_______;

3)已知,根據(jù)數(shù)形結(jié)合,求出的最小值?的最大值?

【答案】15;(23;(3M最小值=,N最大值=

【解析】

1)利用兩點間的距離公式AB=計算;
2)利用軸對稱的性質(zhì)求得點P的坐標以及AP+PB的最小值;
3)利用MN所表示的幾何意義解答.

解:(1AB==5;
故答案是:5
2)如圖,

∵點A坐標為(3,3),
∴點A關(guān)于x軸對稱的點A′的坐標是(3,-3),
此時AP+PB=A′B=,
故答案是:3;
3M=
M取最小值時,M表示點(x,0)與點(6,4)的距離與點(x,0)與點 3,2)的距離之和(或M表示點(x0)與點(6,-4)的距離與點(x,0)與點 3,-2)的距離之和),
此時M最小值=,
N=,當N取最大值時,N表示點(x,0)與點(6-4)的距離與點(x,0)與點 3,2)的距離之差(或M表示點(x,0)與點(6-4)的距離與點(x,0)與點 3,2)的距離之差),
此時N最大值=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,若二次函數(shù)的圖像與軸交于點-10)、,與軸交于點0,4),連接、,且拋物線的對稱軸為直線

1)求二次函數(shù)的解析式;

2)若點是拋物線在一象限內(nèi)上方一動點,且點在對稱軸的右側(cè),連接,是否存在點,使?若存在,求出點的坐標;若不存在,說明理由;

3)如圖2,若點是拋物線上一動點,且滿足,請直接寫出點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某交為了開展陽光體育運動,計劃購買籃球和足球,已知足球的單價比籃球的單價多元.若購買個籃球和個足球需花費元.

1)求籃球和足球的單價各是多少元;

2)若學校購買籃球和足球共個,且購買籃球的總金額不超過購買足球的總金額,則學校最多可購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象相交于點,反比例函數(shù)的圖象經(jīng)過點.

1)求反比例函數(shù)的表達式;

2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個交點為,連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線L上有三個正方形a,b,c,若a,c的面積分別為1和9,則b的面積為( )

A.8 B.9 C.10 D.11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為加強公民節(jié)電意識,某縣將居民用電量分為兩個階梯,月用電量不超過度時按第一個階梯費用收費,超過度時,超出的部分按第二個階梯費用收費下表是該縣居民肖偉家20193月和4月所交電費的收據(jù).求該縣居民用電第--階梯電費和第二階梯電費分別為每度多少元?

電費收據(jù)(幸福里小區(qū)電費專用章)

戶名

肖偉

電表號

月份

3

用電量

金額

20193月收費員林云

電費收據(jù)(幸福里小區(qū)電費專用章)

戶名

肖偉

電表號

月份

4

用電量

金額

20194月收費員林云

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C90°,∠A30°BC1,點D在邊AC上,且∠DBC45°,求sinABD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,AC=BC,ACB=90°,點D,E分別在AC,BC上,且CD=CE.

(1)如圖1,求證:∠CAE=CBD;

(2)如圖2,F(xiàn)BD的中點,求證:AECF;

(3)如圖3,F(xiàn),G分別是BD,AE的中點,若AC=2,CE=1,求CGF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】劉徵是我國古代最杰出的數(shù)學家之一,他在《九算術(shù)圓田術(shù))中用“割圓術(shù)”證明了圓面積的精確公式,并給出了計算圓周率的科學方法(注:圓周率=圓的周長與該圓直徑的比值)“割圓術(shù)”就是以“圓內(nèi)接正多邊形的面積”,來無限逼近“圓面積”,劉徽形容他的“割圓術(shù)”說:割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣.劉徽計算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑R.此時圓內(nèi)接正六邊形的周長為6R,如果將圓內(nèi)接正六邊形的周長等同于圓的周長,可得圓周率為3.當正十二邊形內(nèi)接于圓時,如果按照上述方法計算,可得圓周率為_____.(參考數(shù)據(jù):sinl5°=0.26)

查看答案和解析>>

同步練習冊答案