【題目】為加強(qiáng)公民節(jié)電意識(shí),某縣將居民用電量分為兩個(gè)階梯,月用電量不超過(guò)度時(shí)按第一個(gè)階梯費(fèi)用收費(fèi),超過(guò)度時(shí),超出的部分按第二個(gè)階梯費(fèi)用收費(fèi)下表是該縣居民肖偉家2019年3月和4月所交電費(fèi)的收據(jù).求該縣居民用電第--階梯電費(fèi)和第二階梯電費(fèi)分別為每度多少元?
電費(fèi)收據(jù)(幸福里小區(qū)電費(fèi)專用章)
戶名 | 肖偉 |
電表號(hào) | |
月份 | 3月 |
用電量 | 度 |
金額 | 元 |
2019年3月收費(fèi)員林云
電費(fèi)收據(jù)(幸福里小區(qū)電費(fèi)專用章)
戶名 | 肖偉 |
電表號(hào) | |
月份 | 4月 |
用電量 | 度 |
金額 | 元 |
2019年4月收費(fèi)員林云
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(﹣3,y1),B(2,y2)均在拋物線y=ax2+bx+c上,點(diǎn)P(m,n)是該拋物線的頂點(diǎn),若y1>y2≥n,則m的取值范圍是( )
A.﹣3<m<2B.﹣<m<-C.m>﹣D.m>2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn) A 的坐標(biāo)是(﹣2,0),點(diǎn) B 的坐標(biāo)是(0,6),C 為 OB 的中點(diǎn),將△ABC 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn) 90°后得到△A′B′C′.若反比例函數(shù) y 的圖象恰好經(jīng)過(guò) A′B 的中點(diǎn) D,則k _________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1和圖2,在△ABC中,AB=13,BC=14,.
探究:如圖1,AH⊥BC于點(diǎn)H,則AH=___,AC=___,△ABC的面積=___.
拓展:如圖2,點(diǎn)D在AC上(可與點(diǎn)A、C重合),分別過(guò)點(diǎn)A、C作直線BD的垂線,垂足為E、F,設(shè)BD=x,AE=m,CF=n,(當(dāng)點(diǎn)D與A重合時(shí),我們認(rèn)為=0).
(1)用含x、m或n的代數(shù)式表示及;
(2)求(m+n)與x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;
(3)對(duì)給定的一個(gè)x值,有時(shí)只能確定唯一的點(diǎn)D,指出這樣的x的取值范圍.
發(fā)現(xiàn):請(qǐng)你確定一條直線,使得A、B、C三點(diǎn)到這條直線的距離之和最小(不必寫出過(guò)程),并寫出這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:在平面直角坐標(biāo)系中,任意兩點(diǎn),之間的位置關(guān)系有以下三種情形;
①如果軸,則,
②如果軸,則,
③如果與軸、軸均不平行,如圖,過(guò)點(diǎn)作與軸的平行線與過(guò)點(diǎn)作與軸的平行線相交于點(diǎn),則點(diǎn)坐標(biāo)為,由①得;由②得;根據(jù)勾股定理可得平面直角坐標(biāo)系中任意兩點(diǎn)的距離公式.
(1)若點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為則________;
(2)若點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,點(diǎn)是軸上的動(dòng)點(diǎn),直接寫出最小值=_______;
(3)已知,根據(jù)數(shù)形結(jié)合,求出的最小值?的最大值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①在中,若點(diǎn)在邊上,且則點(diǎn)定義為的邊上的“金點(diǎn)”.
已知點(diǎn)是的邊上的“金點(diǎn)”:
①若則的長(zhǎng)為 _;
②若則的長(zhǎng)為 _;
在圖①中,若點(diǎn)是的邊的中點(diǎn),試判斷點(diǎn)是不是的“金
點(diǎn)”,并說(shuō)明理由;
如圖②,已知點(diǎn)為同一直線上三點(diǎn),且在所在直線上是否存在一點(diǎn)使點(diǎn)中的某一點(diǎn)是其余三點(diǎn)圍成的三角形的“金點(diǎn)”.若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)的圖象的一支位于第一象限.
(1)判斷該函數(shù)圖象的另一支所在的象限,并求m的取值范圍;
(2)如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A在該反比例函數(shù)位于第一象限的圖象上,點(diǎn)B與點(diǎn)A關(guān)于軸對(duì)稱,若△OAB的面積為6,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=-x2+x+與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C.將直線AC以點(diǎn)A為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°,交y軸于點(diǎn)D,交拋物線于另一點(diǎn)E.
(1)求直線AE的解析式;
(2)點(diǎn)F是第一象限內(nèi)拋物線上一點(diǎn),當(dāng)△FAD的面積最大時(shí),求出此時(shí)點(diǎn)F的坐標(biāo);
(3)如圖2,將△ACD沿射線AE方向以每秒個(gè)單位的速度平移,記平移后的△ACD為△A′C′D′,平移時(shí)間為t秒,當(dāng)△AC′E為等腰三角形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形的邊上取一點(diǎn)將沿折疊,頂點(diǎn)正好落在邊的中點(diǎn)上,設(shè).
(1)直接寫出的值和的度數(shù);
(2)求證:直線是以為直徑的的切線;
(3)連接交于點(diǎn)求的邊上的高.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com