【題目】已知點軸正半軸上,以為邊作等邊,其中是方程的解.

1)求點的坐標.

2)如圖1,點軸正半軸上,以為邊在第一象限內(nèi)作等邊,連并延長交軸于點,求的度數(shù).

3)如圖2,若點軸正半軸上一動點,點在點的右邊,連,以為邊在第一象限內(nèi)作等邊,連并延長交軸于點,當點運動時,的值是否發(fā)生變化?若不變,求其值;若變化,求出其變化的范圍.

【答案】1;(2;(3)不變化,

【解析】

1)先將分式方程去分母化為整式方程,再求解整式方程,最后檢驗解是原分式方程的解,即得;

2)先證明,進而可得出,再利用三角形內(nèi)角和推出,最后利用鄰補角的性質(zhì)即得

3)先證明,進而得出以及,再根據(jù)以上結(jié)論以及鄰補角對頂角的性質(zhì)推出,最后根據(jù)所對直角邊是斜邊的一半推出,即得為定值.

1)∵

∴方程兩邊同時乘以得:

解得:

檢驗:當時,

∴原分式方程的解為

∴點的坐標為

(2)∵都為等邊三角形

,,

∴在

∵在中,

∵在中,

3)不變化,理由如下:

都為等邊三角形

,,

∴在

,

∴在中,

A點坐標為

為定值9,不變化.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一艘輪船位于燈塔P南偏西60°方向上的點A處,在A正東方向上距離20海里的有一點B處,在燈塔P南偏西45°方向上,求A距離燈塔P的距離.

(參考數(shù)據(jù):≈1.732,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小學學生較多,為了便于學生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.

(1)按約定,“小李同學在該天早餐得到兩個油餅”是 事件;(可能,必然,不可能)

(2)請用列表或樹狀圖的方法,求出小張同學該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,以的一邊為邊畫等腰三角形,使得它的第三個頂點在的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多可畫幾個?(

A.9B.7C.6D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,風箏的圖案是以直線為對稱軸的軸對稱圖形,下列結(jié)論不一定成立的是( )

A.垂直平分線段B.

C.連接、,其交點在D.,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AC=BC,點OAB上,經(jīng)過點A的⊙OBC相切于點D,交AB于點E

1)求證:AD平分∠BAC;

2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).

(1)求證無論k為何值,方程總有兩個不相等實數(shù)根;

(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;

(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是⊙O的直徑,點D是⊙O 上一點,⊙O的切線CBAD的延長線交于點B,點F是直徑AC上一點,連接DF并延長交⊙O于點E,連接AE.

(1)求證:∠ABC=AED;

(2)連接BF,若AD=,AF=6,tanAED=,求BF的長.

查看答案和解析>>

同步練習冊答案