【題目】在一個不透明的布袋中裝有相同的三個小球,其上面分別標注數(shù)字1、2、3、,現(xiàn)從中任意摸出一個小球,將其上面的數(shù)字作為點M的橫坐標;將球放回袋中攪勻,再從中任意摸出一個小球,將其上面的數(shù)字作為點M的縱坐標.
(1)求點M在直線y=x上的概率;
(2)求點M的橫坐標與縱坐標之和是偶數(shù)的概率.
【答案】(1);(2).
【解析】
(1)首先依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,注意要不重不漏;再次注意點M在直線y=x上,即點M的橫、縱坐標相等,求得符合要求的點的個數(shù),利用概率公式求解即可求得答案;
(2)依據(jù)題意先用列表法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式即可求出該事件的概率.
解:(1)列表得:
1 | 2 | 3 | |
1 | (1,1) | (1,2) | (1,3) |
2 | (2,1) | (2,2) | (2,3) |
3 | (3,1) | (3,2) | (3,3) |
∵點M坐標的所有可能的結(jié)果有九個:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),
∴P(點M在直線y=x上)=P(點M的橫、縱坐標相等)==;
(2)列表得:
1 | 2 | 3 | |
1 | 2 | 3 | 4 |
2 | 3 | 4 | 5 |
3 | 4 | 5 | 6 |
∴P(點M的橫坐標與縱坐標之和是偶數(shù))=
科目:初中數(shù)學 來源: 題型:
【題目】已知,中,,點是上一點,連接.
(1)如圖1,當平分時,于,的周長為,求的長.
(2)如圖2,延長至,使,將線段繞點順時針旋轉(zhuǎn)90°得線段,連接,過點作,交的延長線于點,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形 ABCD 的邊長為 4,E 是 BC 的中點,點 P 在射線 AD 上,過點 P 作 PF⊥AE,垂足為 F.
(1)求證:△PFA∽△ABE;
(2)當點 P 在射線 AD 上運動時,設(shè) PA=x,是否存在實數(shù) x,使以 P,F(xiàn),E 為頂點的三角形也與△ABE
相似?若存在,求出 x 的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)(﹣2a3)2(﹣5a3+1)
(2)(4x3y+6x2y2﹣xy3)÷xy
(3)
(4)(2x+3)(2x﹣3)﹣2(x﹣3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲班56人,其中身高在160厘米以上的男同學10人,身高在160厘米以上的女同學3人,乙班80人,其中身高在160厘米以上的男同學20人,身高在160厘米以上的女同學8人.如果想在兩個班的160厘米以上的女生中抽出一個作為旗手,在哪個班成功的機會大?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料: 小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:
設(shè)(其中均為整數(shù)),則有.
∴.這樣小明就找到了一種把部分的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
當均為正整數(shù)時,若,用含m、n的式子分別表示,得= ,= ;
(2)利用所探索的結(jié)論,找一組正整數(shù),填空: + =( + )2;
(3)若,且均為正整數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm,射線AG∥BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,點F從點B出發(fā)沿射線BC以2cm/s的速度運動.如果點E、F同時出發(fā),設(shè)運動時間為t(s)當t=______s時,以A、C、E、F為頂點四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從熱氣球C處測得地面A,B兩點的俯角分別為30°,45°,此時熱氣球C處所在位置到地面上點A的距離為400米.求地面上A,B兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的材料,然后解答問題:
我們新定義一種三角形,兩邊的平方和等于第三邊平方的k倍的三角形叫做“k倍三角形”(k為正實數(shù)).
(1)理解:根據(jù)“k倍三角形”的定義填空(填“銳角”、“直角”或“鈍角”):
①當時,k倍三角形一定是_____________三角形;
②當時,k倍三角形一定是______________三角形.
(2)探究:當時,已知Rt△ABC為“k倍三角形”,且,,求所有滿足條件的k值.
(3)拓展:若Rt△ABC是“k倍三角形”,且,,,.當時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com