【題目】計算:
(1)(﹣2a3)2(﹣5a3+1)
(2)(4x3y+6x2y2﹣xy3)÷xy
(3)
(4)(2x+3)(2x﹣3)﹣2(x﹣3)
【答案】(1)﹣20a9+4a6;(2)4x2+6xy﹣y2;(3)x2+1;(4)4x2﹣2x﹣3.
【解析】
(1)直接利用積的乘方運算法則以及整式的乘法法則進行計算;
(2)直接利用整式的除法法則計算得出答案;
(3)直接利用完全平方公式以及整式的加減運算法則計算得出答案;
(4)直接利用乘法公式以及整式的加減運算法則計算得出答案.
解:(1)(﹣2a3)2(﹣5a3+1)
=4a6(﹣5a3+1)
=﹣20a9+4a6;
(2)(4x3y+6x2y2﹣xy3)÷xy
=4x2+6xy﹣y2;
(3)
=x2+x+1﹣x
=x2+1;
(4)(2x+3)(2x﹣3)﹣2(x﹣3)
=4x2﹣9﹣2x+6
=4x2﹣2x﹣3.
科目:初中數(shù)學 來源: 題型:
【題目】某中學組織學生春游,原計劃租用45座客車若干輛,但有15人沒有座位;若租用同樣數(shù)量的60座客車,則多出一輛車,且其余客車恰好坐滿,已知45座客車每日每輛租金為220元,60座客車每日每輛租金為300元.試問:
(1)春游學生共多少人,原計劃租45座客車多少輛?
(2)若租用同一種車,要使每位同學都有座位,怎樣租車更合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O與Rt△ABC的斜邊AB相切于點D,與直角邊AC相交于E、F兩點,連結DE,已知∠B=30°,⊙O的半徑為12,弧DE的長度為4π.
(1)求證:DE∥BC;
(2)若AF=CE,求線段BC的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司計劃在規(guī)定時間內(nèi)生產(chǎn)5G手機24000部,若每天比原計劃多生產(chǎn)30部,則在規(guī)定時間內(nèi)可以多生產(chǎn)300部.
(1)求原計劃每天生產(chǎn)手機多少部?規(guī)定的天數(shù)是多少天?
(2)為了提前完成生產(chǎn)任務,公司在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線同時進行生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)手機的部數(shù)與20個工人原計劃每天生產(chǎn)的手機總數(shù)相同,按此測算,恰好提前兩天完成24000部5G手機的生產(chǎn)任務,求原計劃安排的工人人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一筆直的海岸線上有A,B兩個觀測站,A觀測站在B觀測站的正東方向,有一艘小船在點P處,從A處測得小船在北偏西60°方向,從B處測得小船在北偏東45°的方向,點P到點B的距離是3千米.(注:結果有根號的保留根號)
(1)求A,B兩觀測站之間的距離;
(2)小船從點P處沿射線AP的方向以千米/時的速度進行沿途考察,航行一段時間后到達點C處,此時,從B測得小船在北偏西15°方向,求小船沿途考察的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的例題及點撥,補全解題過程(完成點撥部分的填空),并解決問題:
例題:如圖1,在等邊中,是邊上一點(不含端點),是的外角的平分線上一點,且.求證:.
點撥:如圖2,作,與的延長線相交于點,得等邊,連結,易證(_______),可得,;
又,則,可得_________;
由,進一步可得______;
又因為,所以,所以.
問題:如圖3,四邊形的四條邊都相等,四個角都等于,是邊上一點(不含端點),是四邊形的外角的平分線上一點,且.求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的布袋中裝有相同的三個小球,其上面分別標注數(shù)字1、2、3、,現(xiàn)從中任意摸出一個小球,將其上面的數(shù)字作為點M的橫坐標;將球放回袋中攪勻,再從中任意摸出一個小球,將其上面的數(shù)字作為點M的縱坐標.
(1)求點M在直線y=x上的概率;
(2)求點M的橫坐標與縱坐標之和是偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在7×7網(wǎng)格中,每個小正方形的邊長都為1.
(1)建立適當?shù)钠矫嬷苯亲鴺讼担裹cA(3,4)、C(4,2),則點B的坐標為 ;
(2)求圖中格點△ABC的面積;
(3)判斷格點△ABC的形狀,并說明理由.
(4)在x軸上有一點P,使得PA+PC最小,則PA+PC的最小值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.
(1)求證:CE=CF;
(2)若點G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com